Citation: Gang LI, Xin-Yu ZHANG, Feng-Li CHEN, Cheng-Cheng ZHANG, Bo-Hong GAO, Hai-Yan WEI, Xin-Yi WANG. Heterogeneous composites with coexisting spin-crossover and long-range magnetic ordering[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2197-2208. doi: 10.11862/CJIC.2023.173 shu

Heterogeneous composites with coexisting spin-crossover and long-range magnetic ordering

Figures(9)

  • A facile precipitation transformation method at room temperature was employed to efficiently prepare the FeTrz@PB heterostructural composites containing both[Fe(Htrz)2(trz)](BF4) (Htrz=1H-1, 2, 4-triazole) and Prussian blue KFe[Fe(CN)6] with the coexistence of spin crossover (SCO) and long-range magnetic ordering (LRMO). The controllable growth process of these heterostructural composites was fully characterized by scanning electron micro-scope, transmission electron microscope, powder X-ray diffraction, FTIR, X-ray photoelectron spectroscopy, energy-dispersion X-ray analysis, thermogravimetric analysis, and magnetic studies. The size of the PB particles and the appearance of FeTrz@PB can be tuned by controlling the reaction time. Increasing the reaction time leads to the increased ratio of the PB phase in the FeTrz@PB composites. Remarkably, magnetic studies on FeTrz@PB revealed the coexistence of SCO above room temperature (362-392 K) and LRMO at low temperatures (ca. 5.6 K). The high spin (HS) fraction and ZFC/FC intensity gradually increased with the growth time, while the heights of the hysteresis loops decreased gradually.
  • 加载中
    1. [1]

      Kumar K S, Ruben M. Emerging trends in spin crossover (SCO) based functional materials and devices[J]. Coord. Chem. Rev., 2017,346:176-205. doi: 10.1016/j.ccr.2017.03.024

    2. [2]

      Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A. Spin crossover nanomaterials: From fundamental concepts to devices[J]. Adv. Mater., 2018,30(5)17003862.

    3. [3]

      Enriquez-Cabrera A, Rapakousiou A, Bello M P, Molnár G, Salmon L, Bousseksou A. Spin crossover polymer composites, polymers and related soft materials[J]. Coord. Chem. Rev., 2020,419213396. doi: 10.1016/j.ccr.2020.213396

    4. [4]

      Coronado E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices[J]. Nat. Rev. Mater., 2020,5(2):87-104.

    5. [5]

      Ge J Y, Chen Z Y, Zhang L, Liang X, Su J, Kurmoo M, Zuo J L. A two-dimensional Iron(Ⅱ) coordination polymer with synergetic spin-crossover and luminescent properties[J]. Angew. Chem. Int. Ed., 2019,58(26):1-6.

    6. [6]

      Nieto-Castro D, Garcés-Pineda F A, Moneo-Corcuera A, Sánchez-Molina I, Galán-Mascarós J R. Mechanochemical processing of highly conducting organic/inorganic composites exhibiting spin crossover-induced memory effect in their transport properties[J]. Adv. Funct. Mater., 2021,31(33)2102469. doi: 10.1002/adfm.202102469

    7. [7]

      Kühne I A, Ozarowski A, Sultan A, Esien K, Carter A B, Wix P, Casey A, Heerah-Booluck M, Keene T D, Müller-Bunz H, Felton S, Hill S, Morgan G G. Homochiral Mn3+ spin-crossover complexes: A structural and spectroscopic study[J]. Inorg. Chem., 2022,61(8):3458-3471. doi: 10.1021/acs.inorgchem.1c03379

    8. [8]

      Wen W, Liu Q, Zhang S H, Yao N T, Oshio R O, Meng Y S, Liu T. Spin-crossover tuned rotation of pyrazolyl rings in a 2D Iron(Ⅱ) complex towards synergetic magnetic and dielectric transitions[J]. Angew. Chem. Int. Ed., 2022,61(34)e202208886. doi: 10.1002/anie.202208886

    9. [9]

      Tissot A, Kesse X, Giannopoulou S, Stenger I, Binet L, Rivière E, Serre C. A spin crossover porous hybrid architecture for potential sensing applications[J]. Chem. Commun., 2019,55(2):194-197. doi: 10.1039/C8CC07573E

    10. [10]

      Zappe L, Schönfeld S, Hörner G, Zenere K A, Leong C F, Kepert C J, D'Alessandro D M, Weber B, Neville S M. Spin crossover modulation in a coordination polymer with the redox-active bis-pyridyltetrathiafulvalene (py2TTF) ligand[J]. Chem. Commun., 2020,56(72):10469-10472. doi: 10.1039/D0CC03788E

    11. [11]

      Peng H, Wang D, Ma D S, Zhou Y, Zhang J H, Kang Y J, Yue Q. Multifunctional yolk-shell structured magnetic mesoporous polydopamine/carbon microspheres for photothermal therapy and heterogenous catalysis[J]. ACS Appl. Mater. Interfaces, 2022,14(20):23888-23895. doi: 10.1021/acsami.2c04689

    12. [12]

      Dey B, Chandrasekhar V. Fe spin crossover complexes containing N4O2 donor ligands[J]. Dalton Trans., 2022,51(37):13995-14021. doi: 10.1039/D2DT01967A

    13. [13]

      Javed M K, Sulaiman A, Yamashita M, Li Z Y. Shedding light on bifunctional luminescent spin crossover materials[J]. Coord. Chem. Rev., 2022,467214625. doi: 10.1016/j.ccr.2022.214625

    14. [14]

      Üngör Ö, Choi E S, Shatruk M. Optimization of crystal packing in semiconducting spin-crossover materials with fractionally charged TCNQδ- anions (0 < δ < 1)[J]. Chem. Sci., 2021,12(32):10765-10779. doi: 10.1039/D1SC02843J

    15. [15]

      Dugay J, Aarts M, Giménez-Marqués M, Kozlova T, Zandbergen H W, Coronado E, van der Zantt H S J. Phase transitions in spin-crossover thin films probed by graphene transport measurements[J]. Nano Lett., 2017,17(1):186-193. doi: 10.1021/acs.nanolett.6b03780

    16. [16]

      Chen Y C, Meng Y, Ni Z P, Tong M L. Synergistic electrical bistability in a conductive spin crossover heterostructure[J]. J. Mater. Chem. C, 2015,3(5):945-949. doi: 10.1039/C4TC02580F

    17. [17]

      Wang Y X, Qiu D, Xi S F, Ding Z D, Li Z J, Li Y X, Ren X H, Gu Z G. Iron(Ⅱ)-triazole core-shell nanocomposites: Toward multistep spin crossover materials[J]. Chem. Commun., 2016,52(51):8034-8037. doi: 10.1039/C6CC02334G

    18. [18]

      Kosaka W, Nomura K, Hashimoto K, Ohkoshi S I. Observation of an Fe(Ⅱ) spin-crossover in a cesium iron hexacyanochromate[J]. J. Am. Chem. Soc., 2005,127(24):8590-8591. doi: 10.1021/ja050118l

    19. [19]

      Arai M, Kosaka W, Matsuda T, Ohkoshi S I. Observation of an iron(Ⅱ) spin-crossover in an iron octacyanoniobate-based magnet[J]. Angew. Chem. Int. Ed., 2008,47(36):6885-6887. doi: 10.1002/anie.200802266

    20. [20]

      Clemente-León M, Coronado E, López-Jordà M, Desplanches C, Asthana S, Wang H F, Létard J F. A hybrid magnet with coexistence of ferromagnetism and photoinduced Fe? spin-crossover[J]. Chem. Sci., 2011,2(6):1121-1127. doi: 10.1039/c1sc00015b

    21. [21]

      Roubeau O, Evangelistia M, Natividad E. A spin crossover ferrous complex with ordered magnetic ferric anions[J]. Chem. Commun., 2012,48(61):7604-7606. doi: 10.1039/c2cc33709f

    22. [22]

      Abhervé A, Grancha T, Ferrando-Soria J, Clemente-León M, Coronado E, Waerenborgh J C, Lloreta F, Pardo E. Spin-crossover complex encapsulation within a magnetic metal-organic framework[J]. Chem. Commun., 2016,52(46):7360-7363. doi: 10.1039/C6CC03667H

    23. [23]

      Okubo M, Li C H, Talham D R. High rate sodium ion insertion into core-shell nanoparticles of Prussian blue analogues[J]. Chem. Commun., 2014,50(11):1353-1355. doi: 10.1039/C3CC47607C

    24. [24]

      Gros C R, Peprah M K, Hosterman B D, Brinzari T V, Quintero P A, Sendova M, Meisel M W, Talham D R. Light-induced magnetization changes in a coordination polymer heterostructure of a Prussian blue analogue and a Hofmann-like Fe(Ⅱ) spin crossover compound[J]. J. Am. Chem. Soc., 2014,136(28):9846-9849. doi: 10.1021/ja504289p

    25. [25]

      Gros C R, Peprah M K, Felts A C, Brinzari T V, Risset O N, Cain J M, Ferreira C F, Meisel M W, Talham D R. Synergistic photomagnetic effects in coordination polymer heterostructure particles of Hofmann-like Fe(4-phenylpyridine)2[Ni(CN)4]·0.5H2O and K0.4Ni[Cr(CN)6]0.8·nH2O[J]. Dalton Trans., 2016,45(42):16624-16634. doi: 10.1039/C6DT02353C

    26. [26]

      Herren F, Fisher P, Ludi A, Halg W. Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3·xH2O[J]. Inorg. Chem., 1980,19(4):956-959. doi: 10.1021/ic50206a032

    27. [27]

      Hu Y, Zhu T S, Guo Z P, Popli H, Malissa H, Huang Y L, An L, Li Z, Armstrong J N, Boehme C, Vardeny Z V, N'Diaye A T, Zhou C, Wuttig M, Grossman J C, Ren S Q. Printing air-stable high-Tc molecular magnet with tunable magnetic interaction[J]. Nano Lett., 2022,22(2):545-553.

    28. [28]

      Boström H L B, Cairns A B, Liu L, Lazorc P, Collings I E. Spin crossover in the Prussian blue analogue FePt(CN)6 induced by pressure or X-ray irradiation[J]. Dalton Trans., 2020,49(37):12940-12944. doi: 10.1039/D0DT02036B

    29. [29]

      Glatz J, Jiménez J R, Godeffroy L, von Bardeleben H J, Fillaud L, Maisonhaute E, Li Y L, Chamoreau L M, Lescouëzec R. Enlightening the alkali ion role in the photomagnetic effect of FeCo Prussian blue analogues[J]. J. Am. Chem. Soc., 2022,144(24):10888-10901. doi: 10.1021/jacs.2c03421

    30. [30]

      Egan L, Kamenev K, Papanikolaou D, Takabayashi Y, Margadonna S. Pressure-induced sequential magnetic pole inversion and antiferromagnetic-ferromagnetic crossover in a trimetallic Prussian blue analogue[J]. J. Am. Chem. Soc., 2006,128(18):6034-6035. doi: 10.1021/ja061514m

    31. [31]

      Wang W L, Gang Y, Hu Z, Yan Z C, Li W J, Li Y C, Gu Q F, Wang Z X, Chou S L, Liu H K, Dou S X. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nat. Commun., 2020,11(1)980. doi: 10.1038/s41467-020-14444-4

    32. [32]

      Zhang M, Zhou J, Yu J L, Shi L D, Ji M W, Liu H C, Li D Z, Zhu C Z, Xu J. Mixed analogous heterostructure based on MXene and Prussian blue analog derivative for high-performance flexible energy storage[J]. Chem. Eng. J., 2020,387123170. doi: 10.1016/j.cej.2019.123170

    33. [33]

      Vega-Moreno J, Lemus-Santana A A, Reguera E, Andrio A, Compañ A. High proton conductivity at low and moderate temperature in a simple family of Prussian blue analogs, divalent transition metal hexacyanocobaltates[J]. Electrochim. Acta, 2020,360136959. doi: 10.1016/j.electacta.2020.136959

    34. [34]

      Boudjema L, Long J, Salles F, Larionova J, Guari Y, Trens P. A switch in the hydrophobic/hydrophilic gas-adsorption character of Prussian blue analogues: An affinity control for smart gas sorption[J]. Chem.-Eur. J., 2019,25(2):479-484. doi: 10.1002/chem.201804730

    35. [35]

      Lin X J, Cao S F, Chen H Y, Chen X D, Wang Z J, Zhou S N, Xu H, Liu S Y, Wei S X, Lu X Q. Boosting oxygen evolution reaction of hierarchical spongy NiFe-PBA/Ni3C(B) electrocatalyst: Interfacial engineering with matchable structure[J]. Chem. Eng. J., 2022,433133524. doi: 10.1016/j.cej.2021.133524

    36. [36]

      Guari Y, Cahu M, Felix G, Sene S, Long J, Chopineau J, Devoisselle J M, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its analogues: Design, properties and applications[J]. Coord. Chem. Rev., 2022,461214497. doi: 10.1016/j.ccr.2022.214497

    37. [37]

      Wu X Y, Ru Y, Bai Y, Zhang G X, Shi Y X, Pang H. PBA composites and their derivatives in energy and environmental applications[J]. Coord. Chem. Rev., 2022,451214260. doi: 10.1016/j.ccr.2021.214260

    38. [38]

      Qin Z G, Li Y, Gu N. Progress in applications of Prussian blue nanoparticles in biomedicine[J]. Adv. Healthc. Mater., 2018,7(20)1800347. doi: 10.1002/adhm.201800347

    39. [39]

      He W H, Cain J M, Meisel M W, Talham D R. Interplay between core and shell in a RbCoFe@RbNiCo Prussian blue analogue spin transition heterostructure[J]. J. Mater. Chem. C, 2021,9(33):10830-10840. doi: 10.1039/D1TC01514A

    40. [40]

      Sanchis-Gual R, Otero T F, Coronado-Puchau M, Coronado E. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles[J]. Nanoscale, 2021,13(29):12676-12686. doi: 10.1039/D1NR02928B

    41. [41]

      Maurin-Pasturel G, Long J, Guari Y, Godiard F, Willinger M G, Guerin C, Larionova J. Nanosized heterostructures of Au@Prussian blue analogues: Towards multifunctionality at the nanoscale[J]. Angew. Chem. Int. Ed., 2014,53(15):3872-3876. doi: 10.1002/anie.201310443

    42. [42]

      Cabrera-Garcia A, Checa-Chavarria E, Pacheco-Torres J, Bernabeu-Sanz A, Vidal-Moya A, Rivero-Buceta E, Sastre G, Fernández E, Botella P. Engineered contrast agents in a single structure for T1-T2 dual magnetic resonance imaging[J]. Nanoscale, 2018,10(14):6349-6360. doi: 10.1039/C7NR07948F

    43. [43]

      Kahn O, Martinez C J. Spin-transition polymers: From molecular materials toward memory devices[J]. Science, 1998,279(5347):44-48. doi: 10.1126/science.279.5347.44

    44. [44]

      Piedrahita-Bello M, Angulo-Cervera J E, Courson R, Molnár G, Malaquin L, Thibault C, Tondu B, Salmon L, Bousseksou A. 4D printing with spin-crossover polymer composites[J]. J. Mater. Chem. C, 2020,8(18):6001-6005. doi: 10.1039/D0TC01532F

    45. [45]

      Torres-Cavanillas R, Morant-Giner M, Escorcia-Ariza G, Dugay J, Canet-Ferrer J, Tatay S, Cardona-Serra S, Gimenez-Marques M, Galbiati M, Forment-Aliaga A, Coronado E. Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching[J]. Nat. Chem., 2021,13(11):1101-1109. doi: 10.1038/s41557-021-00795-y

    46. [46]

      Roubeau O. Triazole-based one-dimensional spin-crossover coordination polymers[J]. Chem.-Eur. J., 2012,18(48):15230-15244. doi: 10.1002/chem.201201647

    47. [47]

      Tanaka D, Aketa N, Tanaka H, Horike S, Fukumori M, Tamaki T, Inose T, Akai T, Toyama H, Sakata O, Tajiri H, Ogawa T. Facile preparation of hybrid thin films composed of spin-crossover nanoparticles and carbon nanotubes for electrical memory devices[J]. Dalton Trans., 2019,48(21):7074-7079. doi: 10.1039/C8DT02923G

    48. [48]

      Li Z H, Wang Y X, Han W K, Zhu W, Li T, Li Z J, Ren X H, Gu Z G. Integrating spin-crossover nanoparticles with silver nanowires: Toward magnetic and conductive bifunctional nanomaterials[J]. New J. Chem., 2017,41(18):10062-10068. doi: 10.1039/C7NJ02089A

    49. [49]

      Palluel M, Tran N M, Daro N, Buffière S, Mornet S, Freysz E, Chastanet G. The interplay between surface plasmon resonance and switching properties in gold@spin crossover nanocomposites[J]. Adv. Funct. Mater., 2020,30(17)2000447. doi: 10.1002/adfm.202000447

    50. [50]

      Piedrahita-Bello M, Martin B, Salmon L, Molnár G, Demont P, Bousseksou A. Mechano-electric coupling in P(VDF-TrFE)/spin crossover composites[J]. J. Mater. Chem. C, 2020,8(18):6042-6051. doi: 10.1039/D0TC00780C

    51. [51]

      Gural'skiy I A, Quintero C M, Costa J S, Demont P, Molnár G, Salmon L, Shepherd , H J, Bousseksou A. Spin crossover composite materials for electrothermomechanical actuators[J]. J. Mater. Chem. C, 2014,2(16):2949-2955. doi: 10.1039/C4TC00267A

    52. [52]

      Manrique-Juárez M D, Mathieu F, Laborde A, Rat S, Shalabaeva V, Demont P, Thomas O, Salmon L, Leichle T, Nicu L, Molnár G, Bousseksou A. Micromachining-compatible, facile fabrication of polymer nanocomposite spin crossover actuators[J]. Adv. Funct. Mater., 2018,28(29)1801970. doi: 10.1002/adfm.201801970

    53. [53]

      Rat S, Piedrahita-Bello M, Salmon L, Molnár G, Demont P, Bousseksou A. Coupling mechanical and electrical properties in spin crossover polymer composites[J]. Adv. Mater., 2018,30(8)1705275. doi: 10.1002/adma.201705275

    54. [54]

      Titos-Padilla S, Herrera J M, Chen X W, Delgado J J, Colacio E. Bifunctional hybrid SiO2 nanoparticles showing synergy between core spin crossover and shell luminescence properties[J]. Adv. Mater., 2018,50(14):3290-3293.

    55. [55]

      Suleimanov I, Kraieva O, Costa J S, Fritsky I O, Molnár G, Salmon L, Bousseksou A. Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles[J]. J. Mater. Chem. C, 2015,3(19):5026-5032. doi: 10.1039/C5TC00667H

    56. [56]

      Suleimanov I, Kraieva O, Molnár G, Salmon L, Bousseksou A. Enhanced luminescence stability with a Tb-spin crossover nanocomposite for spin state monitoring[J]. Chem. Commun., 2015,51(82):15098-15101. doi: 10.1039/C5CC06426K

    57. [57]

      Díaz-Ortega I F, Fernández-Barbosa E L, Titos-Padilla S, Pope S J A, Jiménez J R, Colacio E, Herrera J M. Monitoring spin-crossover phenomena via Re(Ⅰ) luminescence in hybrid Fe(Ⅱ) silica coated nanoparticles[J]. Dalton Trans., 2021,50(44):16176-16184. doi: 10.1039/D1DT03334D

    58. [58]

      Jia Y, Ji Y G, Xue Q, Li F M, Zhao G T, Jin P J, Li S N, Chen Y. Efficient nitrate-to-ammonia electroreduction at cobalt phosphide nanoshuttles[J]. ACS Appl. Mater. Interfaces, 2021,13(38):45521-45527. doi: 10.1021/acsami.1c12512

    59. [59]

      Xiao X, Zhang G X, Xu Y X, Zhang H L, Guo X T, Liu Y, Pang H. A new strategy for the controllable growth of MOF@PBA architectures[J]. J. Mater. Chem. A, 2019,7(29):17266-17271. doi: 10.1039/C9TA05409J

    60. [60]

      Samain L, Grandjean F, Long G J, Martinetto P, Bordet P, Strivay D. Relationship between the synthesis of Prussian blue pigments, their color, physical properties, and their behavior in paint layers[J]. J. Phys. Chem. C, 2013,117(19):9693-9712. doi: 10.1021/jp3111327

    61. [61]

      Siddiqui S A, Domanov O, Schafler E, Vejpravova J, Shiozawa H. Synthesis and size-dependent spin crossover of coordination polymer [Fe(Htrz)2(trz)](BF4)[J]. J. Mater. Chem. C, 2021,9(3):1077-1084. doi: 10.1039/D0TC03878D

    62. [62]

      Palluel M, El Khoury L, Daro N, Buffière S, Josse M, Marchivie M, Chastanet G. Rational direct synthesis of [Fe(Htrz)2(trz)](BF4) polymorphs: Temperature and concentration effects[J]. Inorg. Chem. Front., 2021,8(15):3697-3706. doi: 10.1039/D1QI00482D

    63. [63]

      Mamontova E, Daurat M, Long J, Godefroy A, Salles F, Guari Y, Gary-Bobo M, Larionova J. Fashioning Prussian blue nanoparticles by adsorption of luminophores: Synthesis, properties, and in vitro imaging[J]. Inorg. Chem., 2020,59(7):4567-4575. doi: 10.1021/acs.inorgchem.9b03699

    64. [64]

      Zhao Z X, Xu S W, Du Z J, Jiang C, Huang X Z. Metal-organic framework-based PB@MoS2 core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance[J]. ACS Sustainable Chem. Eng., 2019,7(7):7183-7192. doi: 10.1021/acssuschemeng.9b00191

    65. [65]

      Wu X Y, Qiu S, Xu Y K, Ma L, Bi X X, Yuan Y F, Wu T P, Shahbazian-Yassar R, Lu J, Ji X L. Hydrous nickel-iron Turnbull's blue as a high-rate and low temperature proton electrode[J]. ACS Appl. Mater. Interfaces, 2020,12(8):9201-9208. doi: 10.1021/acsami.9b20320

    66. [66]

      Zhou P H, Xue D S. Finite-size effect on magnetic properties in Prussian blue nanowire arrays[J]. J. Appl. Phys., 2004,96(1):610-614. doi: 10.1063/1.1737044

    67. [67]

      Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly(vinylpyrrolidone)[J]. J. Am. Chem. Soc., 2003,125(26):7814-7815. doi: 10.1021/ja0356582

    68. [68]

      Kumar B, Paul A, Mondal D J, Paliwal P, Konar S. Spin-state modulation in Fe-based Hofmann-type coordination polymers: From molecules to materials[J]. Chem. Rec., 2022,22(11)e2022001.

    69. [69]

      Cain J M, He W H, Maurin I, Meisel M W, Talham D R. Stimulus induced strain in spin transition heterostructures[J]. J. Appl. Phys., 2021,129(16)160903. doi: 10.1063/5.0045939

    70. [70]

      Liu S S, Zhou K, Yuan T L, Lei W R, Chen H Y, Wang X Y, Wang W. Imaging the thermal hysteresis of single spin-crossover nanoparticles[J]. J. Am. Chem. Soc., 2020,142(37):15852-1585. doi: 10.1021/jacs.0c05951

  • 加载中
    1. [1]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    2. [2]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    3. [3]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    4. [4]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    5. [5]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    6. [6]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    7. [7]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    8. [8]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    9. [9]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    10. [10]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    11. [11]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    12. [12]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    13. [13]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    14. [14]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    15. [15]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    16. [16]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    17. [17]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    18. [18]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    19. [19]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    20. [20]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

Metrics
  • PDF Downloads(1)
  • Abstract views(431)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return