Citation: Kang XIAO, Wang-Wang XIE, Xiang-Mei LIU. Preparation of nanoscale hafnium-containing metal-organic frameworks for X-ray-promoted chemodynamic synergistic therapy[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2033-2041. doi: 10.11862/CJIC.2023.171 shu

Preparation of nanoscale hafnium-containing metal-organic frameworks for X-ray-promoted chemodynamic synergistic therapy

  • Corresponding author: Xiang-Mei LIU, iamxmliu@njupt.edu.cn
  • Received Date: 23 April 2023
    Revised Date: 8 September 2023

Figures(6)

  • Nanoscale hafnium-containing metal-organic frameworks (Hf-nMOFs) with octahedral (Hf-MOFs-1) and sheet-like (Hf-MOFs-2) structures were synthesized by a solvothermal method using hafnium clusters as the connection point of the MOF, rigid dicarboxylic ligand 2, 2'-bipyridyl-5, 5'-dicarboxylic acid as the connector, acetic acid or trifluoroacetic acid and water as the structural regulator. Subsequently, a post-modification method was used to incorporate Fe3+ into the backbone of Hf-nMOFs, leading to the creation of multifunctional nMOFs, designated as Hf-Fe-MOFs-1 and Hf-Fe-MOFs-2. In a mimic tumor microenvironment, the detection of hydroxyl radicals showed that X-ray irradiation significantly increased the generation efficiency of hydroxyl radicals in both Hf-Fe-MOFs-1 and Hf-Fe-MOFs-2, with a more generation ability of sheet-like Hf-Fe-MOFs-2 than that of octahedral Hf-Fe-MOFs-1. Additionally, cellular assays demonstrated successful uptake of the Hf-nMOFs by cells and confirmed their efficacy in achieving low-dose X-ray-promoted chemodynamic synergistic therapy.
  • 加载中
    1. [1]

      Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin M R, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy[J]. Bioeng. Trans. Med., 2023. doi: 10.1002/btm2.10498

    2. [2]

      SUN S J, WU D, ZHANG J H, FAN M F, ZENG L Y. Manganese-doped gold nanoclusters with ultrasmall size and microenvironment-responsive visualized theranostics of tumor[J]. Sci. Sin. Chim., 2021,51(9):1259-1268.  

    3. [3]

      CHEN X Y, LIU Y Y, BU W B. Chenodynamic therapy: integration of Fenton chemistry and biomedicine[J]. Sci. Sin. Chim., 2020,50(2):159-172.  

    4. [4]

      ZHANG J X, HUANG W G, HUANG J L, MAI N Q. Highly conjugated tetraphenylporphrin-Ru(Ⅱ) bipyridine complex: Synthesis, optical properties, and photodynamic anticancer activity[J]. Chinese J. Inorg. Chem., 2022,38(12):2383-2391.  

    5. [5]

      WANG Y W, CHEN J J, TIAN Z F, ZHU M, ZHU Y F. Potassium ferrate-loaded porphyrin-based (Ⅵ) metal-organic frameworks for combined photodymanic and chemodynamic tumor therapy[J]. J. Inorg. Mater., 2021,36(12):1305-1315.  

    6. [6]

      LIU X M, TIAN K, XUE C F, HAN Y F, LIU S J, ZHAO Q. Application of X-ray excited phosphors in photodynamic therapy[J]. Prog. Chem., 2017,29(12):1488-1498.  

    7. [7]

      Tian Q W, Xue F F, Wang Y R, Cheng Y Y, An L, Yang S P, Chen X Y, Huang G. Recent advances in enhanced chemodynamic therapy strategies[J]. Nano Today, 2021,39101162. doi: 10.1016/j.nantod.2021.101162

    8. [8]

      Wang X W, Zhong X Y, Liu Z, Cheng L. Recent progress of chemodynamic therapy-induced combination cancer therapy[J]. Nano Today, 2020,35100946. doi: 10.1016/j.nantod.2020.100946

    9. [9]

      Zhou Y F, Fan S Y, Feng L L, Huang X L, Chen X Y. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy[J]. Adv. Mater., 2021,33(48)2104223. doi: 10.1002/adma.202104223

    10. [10]

      LIU Y B, YU W S, WANG J X, DONG X T, FU Z D, LIU G X. Application of bismuth-based nanomaterials in imaging diagnosis and therapy for cancer[J]. Chinese J. Inorg. Chem., 2021,37(1):1-15.  

    11. [11]

      Wang X, Zhang C Y, Du J F, Dong X H, Jian S, Yan L, Gu Z J, Zhao Y L. Enhanced generation of non-oxygen dependent free radicals by Schottky-type heterostructures of Au-Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization[J]. ACS Nano, 2019,13(5):5947-5958. doi: 10.1021/acsnano.9b01818

    12. [12]

      Zang Y, Gong L J, Mei L Q, Gu Z J, Wang Q. Bi2WO6 semiconductor nanoplates for tumor radiosensitization through high-Z effects and radiocatalysis[J]. ACS Appl. Mater. Interfaces, 2019,11(21):18942-18952. doi: 10.1021/acsami.9b03636

    13. [13]

      Cheng N N, Starkewolf Z, Davidson R A, Sharmah A, Lee C, Lien J, Guo T. Chemical enhancement by nanomaterials under X-ray irradiation[J]. J. Am. Chem. Soc., 2012,134(4):1950-1953. doi: 10.1021/ja210239k

    14. [14]

      Rancoule C, Magne N, Vallard A, Guy J B, Rodriguez-Lafrasse C, Deutsch E, Chargari C. Nanoparticles in radiation oncology: From bench-side to bedside[J]. Cancer Lett., 2016,375(2):256-262. doi: 10.1016/j.canlet.2016.03.011

    15. [15]

      Butterworth K T, McMahon S J, Currell F J, Prise K M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization[J]. Nanoscale, 2012,4(16):4830-4838. doi: 10.1039/c2nr31227a

    16. [16]

      Chen M H, Hanagata N, Ikoma T, Huang J Y, Li K Y, Lin C P, Lin F H. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment[J]. Acta Biomater., 2016,37:165-173. doi: 10.1016/j.actbio.2016.04.004

    17. [17]

      Marill J, Anesary N M, Zhang P, Vivet S, Borghi E, Levy L, Pottier A. Hafnium oxide nanoparticles: Toward an in vitro predictive biological effect?[J]. Radiat. Oncol., 2014,9150. doi: 10.1186/1748-717X-9-150

    18. [18]

      Zhang P, Marin J, Darmon A, Anesary N M, Lu B, Paris S. NBTXR3 radiotherapy-activated functionalized hafnium oxide nanoparticles show efficient antitumor effects across a large panel of human cancer models[J]. Int. J. Nanomed., 2021,16:2761-2773. doi: 10.2147/IJN.S301182

    19. [19]

      Bonvalot S, Rutkowski P L, Thariat J, Carrere S, Ducassou A, Sunyach M P, Agoston P, Hong A, Mervoyer A, Rastrelli M, Moreno V, Li R K, Tiangco B, Herraez A C, Gronchi A, Mangel L, Sy-Ortin T, Hohenberger P, de Baere T, Le Cesne A, Helfre S, Saada-Bouzid E, Borkowska A, Anghel R, Co A, Gebhart M, Kantor G, Montero A, Loong H H, Verges R, Lapeire L, Dema S, Kacso G, Austen L, Moureau-Zabotto L, Servois V, Wardelmann E, Terrier P, Lazar A J, Bovee J V M G, Le Pechoux C, Papi Z. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): A multicentre, phase 2-3, randomised, controlled trial[J]. Lancet Oncol., 2019,20(8):1148-1159. doi: 10.1016/S1470-2045(19)30326-2

    20. [20]

      Field J A, Luna-Velasco A, Boitano S A, Shadman F, Ratner B D, Barnes C, Sierra-Alvarez R. Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles[J]. Chemosphere, 2011,84(10):1401-1407. doi: 10.1016/j.chemosphere.2011.04.067

    21. [21]

      Bonvalot S, Rutkowski P L, Thariat J, Carrere S, Sunyach M P, Saada E, Agoston P, Hong A, Mervoyer A, Rastrelli M, Le Pechoux C, Moreno V, Li R, Tiangco B, Casado Herraez A, Gronchi A, Mangel L, Hohenberger P, Delannes M, Papai Z. A phase Ⅱ/Ⅲ trial of hafnium oxide nanoparticles activated by radiotherapy in the treatment of locally advance soft tissue sarcoma of the extremity and trunk wall[J]. Ann. Oncol., 2018,29:753-753.

    22. [22]

      Singh D, Dilnawaz F, Sahoo S K. Challenges of moving theranostic nanomedicine into the clinic[J]. Nanomedicine, 2020,15(2):111-114. doi: 10.2217/nnm-2019-0401

    23. [23]

      Shatkin J A. The Future in Nanosafety[J]. Nano Lett., 2020,20(3):1479-1480. doi: 10.1021/acs.nanolett.0c00432

    24. [24]

      Gao S T, Han Y, Fan M, Li Z H, Ge K, Liang X J, Zhang J C. Metal-organic framework-based nanocatalytic medicine for chemodynamic therapy[J]. Sci. China-Mater., 2020,63(12):2429-2434. doi: 10.1007/s40843-020-1513-8

    25. [25]

      WU Z Q, LIU X Y. Integrated application of metal-organic frameworks in cancer diagnosis and treatment[J]. Applied Chemical Industry, 2022,51(8):2396-2399.  

    26. [26]

      Lan G X, Ni K Y, Veroneau S S, Song Y, Lin W B. Nanoscale metal-organic layers for radiotherapy-radiodynamic therapy[J]. J. Am. Chem. Soc., 2018,140(49):16971-16975. doi: 10.1021/jacs.8b11593

    27. [27]

      Lan G X, Ni K Y, Xu R Y, Lu K D, Lin Z K, Chan C, Lin W B. Nanoscale metal-organic layers for deeply penetrating X-ray-induced photodynamic therapy[J]. Angew. Chem. Int. Ed., 2017,56(40):12102-12106. doi: 10.1002/anie.201704828

    28. [28]

      Liu J J, Yang Y, Zhu W W, Yi X, Dong Z L, Xu X N, Chen M W, Yang K, Lu G, Jiang L X, Liu Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment[J]. Biomaterials, 2016,97:1-9. doi: 10.1016/j.biomaterials.2016.04.034

    29. [29]

      Lu K D, He C B, Guo N N, Chan C, Ni K Y, Lan G X, Tang H D, Pelizzari C, Fu Y X, Spiotto M T, Weichselbaum R R, Lin W B. Low-dose X-ray radiotherapy-radio dynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy[J]. Nat. Biomed. Eng., 2018,2(8):600-610. doi: 10.1038/s41551-018-0203-4

    30. [30]

      Ni K Y, Lan G X, Veroneau S S, Duan X P, Song Y, Lin W B. Nanoscale metal-organic frameworks for mitochondria-targeted radio-therapy-radiodynamic therapy[J]. Nat. Commun., 2018,94321. doi: 10.1038/s41467-018-06655-7

    31. [31]

      Yuan S, Qin J S, Lollar C T, Zhou H C. Stable metal-organic frameworks with group 4 metals: Current status and trends[J]. ACS Central Sci., 2018,4(4):440-450. doi: 10.1021/acscentsci.8b00073

    32. [32]

      LI M, HUANG X M, TAN W L. 7-Hydroxycoumarin fluorescent probe for the determination of 2, 4, 6-tri-nitrophenol in water[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2019,55(1):108-111.  

    33. [33]

      Lammert M, Glißmann C, Reinsch H, Stock N. Synthesis and characterization of new Ce(Ⅳ)-MOFs exhibiting various framework topologies[J]. Cryst. Growth Des., 2017,17(3):1125-1131.

    34. [34]

      Gong T, Li Y L, Lv B, Wang H, Liu Y Y, Yang W, Wu Y L, Jiang X W, Gao H B, Zheng X P, Bu W B. Full-process radiosensitization based on nanoscale metal-organic frameworks[J]. ACS Nano, 2020,14(3):3032-3040.

    35. [35]

      Sun X, He G H, Xiong C X, Wang C Y, Lian X, Hu L F, Li Z K, Dalgarno S J, Yang Y W, Tian J. One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy[J]. ACS Appl. Mater. Interfaces, 2021,13(3):3679-3693.

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(7)
  • Abstract views(401)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return