Citation: Bi-Cheng LUO, Liang WU, Yan PENG, Xiang-Yu FENG, Ming-Ran ZHOU, Chen-Yu WANG, Jing LIU, Yu LI. PO43- doping and AlF3 coating synergistically enhancing electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2131-2142. doi: 10.11862/CJIC.2023.170 shu

PO43- doping and AlF3 coating synergistically enhancing electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material

Figures(10)

  • The lithium-rich manganese-based material (Li1.2Ni0.13Co0.13Mn0.54O2, LNCM) is susceptible to structural transformations and interfacial side reactions during charge and discharge, leading to rapid capacity decay and posing significant challenges for its commercial application. In this study, a synergistic modification strategy involving PO43- (P) doping and AlF3 coating was employed to prepare the P-LNCM@AlF3 cathode material, which enhances the structural stability of LNCM and suppresses interfacial side reactions. Among them, the large tetrahedral PO43- polyanion doping in the lattice can inhibit the migration of transition metal ions and reduce the volume change due to its stronger bonding with transition metal ions compared to oxygen, thus stabilizing the crystal structure. Moreover, the PO43- doping can expand the lithium layer spacing and promote the diffusion of Li+, thus enhancing the multiplicative performance of the material. In addition, the AlF3 nanolayer coating on the surface of the active material reduces its contact with the electrolyte, which can inhibit the side reaction between the material and the electrolyte and thus enhance the interfacial stability. Based on these advantages, the P-LNCM@AlF3 cathode exhibited excellent electrochemical performance. It exhibited a discharge specific capacity of 179.2 mAh·g-1 at a current density of 1C and 161.5 mAh·g-1 after 200 cycles, with a capacity retention rate of 90.12%. Even at a high current density of 5C, a discharge capacity of 128.8 mAh·g-1 could be achieved.
  • 加载中
    1. [1]

      Wang X T, Gu Z Y, Ang E H, Zhao X X, Wu X L, Liu Y. Prospects for managing end-of-life lithium-ion batteries: Present and future[J]. Interdiscip. Mater., 2022,1(3):417-433. doi: 10.1002/idm2.12041

    2. [2]

      Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K S, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019,575(7781):75-86. doi: 10.1038/s41586-019-1682-5

    3. [3]

      Lu J, Chen Z, Ma Z, Pan F, Curtiss L A, Amine K. The role of nanotechnology in the development of battery materials for electric vehicles[J]. Nat. Nanotechnol., 2016,11(12):1031-1038. doi: 10.1038/nnano.2016.207

    4. [4]

      Yan J, Huang H, Tong J, Li W, Liu X, Zhang H, Huang H, Zhou W. Recent progress on the modification of high nickel content NCM: Coating, doping, and single crystallization[J]. Interdiscip. Mater., 2022,1(3):330-353. doi: 10.1002/idm2.12043

    5. [5]

      He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X, Peng D L. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Adv. Mater., 2021,33(50)2005937. doi: 10.1002/adma.202005937

    6. [6]

      Nayak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries[J]. Adv. Energy Mater., 2018,8(8)1702397. doi: 10.1002/aenm.201702397

    7. [7]

      Ji X, Xia Q, Xu Y, Feng H, Wang P, Tan Q. A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries[J]. J. Power Sources., 2021,487229362. doi: 10.1016/j.jpowsour.2020.229362

    8. [8]

      Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S, Sun Y K. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries[J]. Adv. Energy Mater., 2018,8(25)1801202. doi: 10.1002/aenm.201801202

    9. [9]

      Yan W, Jiang J, Liu W, Sun D, Zhao E, Jin Y, Kanamura K. Effect of precipitators on the morphologies and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 via rapid nucleation and post-solvothermal method[J]. Electrochim. Acta, 2017,224:161-170. doi: 10.1016/j.electacta.2016.12.035

    10. [10]

      Zou W, Xia F J, Song J P, Wu L, Chen L D, Chen H, Liu Y, Dong W D, Wu S J, Hu Z Y, Liu J, Wang H E, Chen L H, Li Y, Peng D L, Su B L. Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery[J]. Electrochim. Acta, 2019,318:875-882. doi: 10.1016/j.electacta.2019.06.119

    11. [11]

      Nguyen T T, Kim U H, Yoon C S, Sun Y K. Enhanced cycling stability of Sn-doped Li[Ni0.90Co0.05Mn0.05]O2 via optimization of particle shape and orientation[J]. Chem. Eng. J., 2021,405126887. doi: 10.1016/j.cej.2020.126887

    12. [12]

      Zhang F, Lou S, Li S, Yu Z, Liu Q, Dai A, Cao C, Toney M F, Ge M, Xiao X, Lee W K, Yao Y, Deng J, Liu T, Tang Y, Yin G, Lu J, Su D, Wang J. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage[J]. Nat. Commun., 2020,11(1)3050. doi: 10.1038/s41467-020-16824-2

    13. [13]

      Li W, Zhang J, Zhou Y, Huang W, Liu X, Li Z, Gao M, Chang Z, Li N, Wang J, Lu S, Li X, Wen W, Zhu D, Lu Y, Zhuang W. Regulating the grain orientation and surface structure of primary particles through tungsten modification to comprehensively enhance the performance of nickel-rich cathode materials[J]. ACS Appl. Mater. Interfaces, 2020,12(42):47513-47525. doi: 10.1021/acsami.0c12893

    14. [14]

      Zhu H, Yu H, Jiang H, Hu Y, Jiang H, Li C. High-efficiency Mo doping stabilized LiNi0.9Co0.1O2 cathode materials for rapid charging and long-life Li-ion batteries[J]. Chem. Eng. Sci., 2020,217115518. doi: 10.1016/j.ces.2020.115518

    15. [15]

      Qian H, Ren H, Zhang Y, He X, Li W, Wang J, Hu J, Yang H, Sari H M K, Chen Y, Li X. Surface doping vs.bulk doping of cathode materials for lithium-ion batteries: A review[J]. Electrochem. Energy Rev., 2022,5(4)2. doi: 10.1007/s41918-022-00155-5

    16. [16]

      YANG J G, LI Y J, LIU Y, CHEN Y F, LU D, SUN W W, DENG C M. Surface modification and electrochemical properties of Li-rich layered cathode materials for lithium-ion batteries[J]. Chinese J. Inorg. Chem., 2022,38(7):1252-1260.  

    17. [17]

      WANG Z, LI L, DENG X L, LIU Y F. High temperature performances of lithium-rich manganese ternary cathode material modified by aluminum based compounds. Chinese J. Inorg. Chem., 2023, 39(6): 1053-1060

    18. [18]

      Peng Y, Wu L, Li C F, Luo B C, Feng X Y, Hu Z Y, Li Y, Su B L. One-pot K+ and PO43- co-doping enhances electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode for Li-ion battery[J]. Electrochim. Acta, 2023142390.

    19. [19]

      Yan W, Xie Y, Jiang J, Sun D, Ma X, Lan Z, Jin Y. Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method[J]. ACS Sustain. Chem. Eng., 2018,6(4):4625-4632. doi: 10.1021/acssuschemeng.7b03634

    20. [20]

      Huang C, Wang Z, Wang H, Huang D, He Y B, Zhao S X. Mg2+ doping into Li sites to improve anionic redox reversibility and thermal stability of lithium-rich manganese-based oxides cathode[J]. Mater. Today Energy, 2022,29101116. doi: 10.1016/j.mtener.2022.101116

    21. [21]

      Lee S H, Moon J S, Lee M S, Yu T H, Kim H, Park B M. Enhancing phase stability and kinetics of lithium-rich layered oxide for an ultra-high performing cathode in Li-ion batteries[J]. J. Power Sources, 2015,281:77-84. doi: 10.1016/j.jpowsour.2015.01.158

    22. [22]

      CHEN L D, ZOU W, WU L, XIA F J, HU Z Y, LI Y, SU B L. Nano-Al2O3 coated Li-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 for highly improved lithium-ion batteries[J]. Chem. J. Chinese Universities, 2020,41(6):1329-1336.  

    23. [23]

      Uzun D. Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery[J]. Solid State Ion., 2015,281:73-81. doi: 10.1016/j.ssi.2015.09.008

    24. [24]

      Guo S, Yu H, Liu P, Liu X, Li D, Chen M, Ishida M, Zhou H. Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries[J]. J. Mater. Chem. A, 2014,2(12):4422-4428. doi: 10.1039/c3ta15206e

    25. [25]

      Zhang X, Yu R, Huang Y, Wang X, Wang Y, Wu B, Liu Z, Chen J. The influences of surface coating layers on the properties of layered/spinel heterostructured Li-rich cathode material[J]. ACS Sustain. Chem. Eng., 2018,6(10):12969-12979. doi: 10.1021/acssuschemeng.8b02436

    26. [26]

      Tang L B, Liu Y, Wei H X, Yan C, He Z J, Li Y J, Zheng J C. Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design[J]. J. Energy Chem., 2021,55:114-123. doi: 10.1016/j.jechem.2020.06.055

    27. [27]

      Liu X, Chen Q, Li Y, Chen C, Zeng W, Yuan M, Wang R, Xiao S. Synergistic modification of magnesium fluoride/sodium for improving the electrochemical performances of high-nickel ternary (NCM811) cathode materials[J]. J. Electrochem. Soc., 2019,166(14):A3480-A3486. doi: 10.1149/2.1301914jes

    28. [28]

      Lu Y, Shi S, Yang F, Zhang T, Niu H, Wang T. Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries[J]. J. Alloy. Compd., 2018,767:23-33. doi: 10.1016/j.jallcom.2018.07.068

    29. [29]

      Liu H, Qian D, Verde M G, Zhang M, Baggetto L, An K, Chen Y, Carroll K J, Lau D, Chi M, Veith G M, Meng Y S. Understanding the role of NH4F and Al2O3 surface Co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2[J]. ACS Appl. Mater. Interfaces, 2015,7(34):19189-19200. doi: 10.1021/acsami.5b04932

    30. [30]

      Liu H, Chen Y, Hy S, An K, Venkatachalam S, Qian D, Zhang M, Meng Y S. Operando lithium dynamics in the Li-Rich layered oxide cathode material via neutron diffraction[J]. Adv. Energy Mater., 2016,6(7)1502143. doi: 10.1002/aenm.201502143

    31. [31]

      Zhong J, Yang Z, Yu Y, Liu Y, Li J, Kang F. Surface substitution of polyanion to improve structure stability and electrochemical properties of lithium-rich layered cathode oxides[J]. Appl. Surf. Sci., 2020,512145741. doi: 10.1016/j.apsusc.2020.145741

    32. [32]

      Manthiram A, Knight J C, Myung S T, Oh S M, Sun Y K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives[J]. Adv. Energy Mater., 2016,6(1)1501010. doi: 10.1002/aenm.201501010

    33. [33]

      Zhao Y, Liu J, Wang S, Ji R, Xia Q, Ding Z, Wei W, Liu Y, Wang P, Ivey D G. surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance[J]. Adv. Funct. Mater., 2016,26(26):4760-4767. doi: 10.1002/adfm.201600576

    34. [34]

      Li L, Zhang Z, Fu S, Liu Z, Liu Y. Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage[J]. J. Alloy. Compd., 2018,768:582-590. doi: 10.1016/j.jallcom.2018.07.223

    35. [35]

      Zhai Y, Zhang J, Zhang H, Liu X, Wang C W, Sun L, Liu X. The synergic effects of Zr doping and Li2TiO3 coating on the crystal structure and electrochemical performances of Li-Rich Li1.2Ni0.2Mn0.6O2[J]. J. Electrochem. Soc., 2019,166(8)A1323. doi: 10.1149/2.0121908jes

    36. [36]

      Tai Z G, Zhu W, Shi M, Xin Y F, Guo S W, Wu Y F, Chen Y Z, Liu Y N. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for Lithium-ion batteries[J]. J. Colloid Interface Sci., 2020,576:468-475. doi: 10.1016/j.jcis.2020.05.015

    37. [37]

      Jo S J, Hwang D Y, Lee S H. Use of zirconium dual-modification on the LiNi0.8Co0.1Mn0.1O2 cathode for improved electrochemical performances of lithium-ion batteries[J]. ACS Appl. Energ. Mater., 2021,4(4):3693-3700. doi: 10.1021/acsaem.1c00130

    38. [38]

      Li W, Zhao B, Bai J, Ma H, Li K, Wang P, Mao Y, Zhu X, Sun Y. Rate performance modification of a lithium-rich manganese-based material through surface self-doping and coating strategies[J]. Langmuir, 2021,37(10):3223-3230. doi: 10.1021/acs.langmuir.1c00225

    39. [39]

      Shen C, Liu Y, Li W, Liu X, Xie J, Jiang J, Jiang Y, Zhao B, Zhang J. One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance[J]. J. Colloid Interface Sci., 2022,615:1-9. doi: 10.1016/j.jcis.2022.01.176

    40. [40]

      Xu Z, Wang J, Zhang K, Zheng H, Dai Z X, Gui J, Yang X Q. Nanoscale lamellar monoclinic Li2MnO3 phase with stacking disordering in lithium-rich and oxygen-deficient Li1.07Mn1.93O4-δ cathode materials[J]. ACS Appl. Mater. Interfaces, 2014,6(2):1219-1227. doi: 10.1021/am404963u

    41. [41]

      Du Z, Peng W, Wang Z, Guo H, Hu Q, Li X. Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating[J]. Ionics, 2018,24(12):3717-3724. doi: 10.1007/s11581-018-2556-9

    42. [42]

      Zhang L, Wu B, Ning L, Feng W. Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries[J]. Electrochim. Acta, 2014,118:67-74. doi: 10.1016/j.electacta.2013.11.186

    43. [43]

      Zhao T, Chen S, Chen R, Li L, Zhang X, Xie M, Wu F. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014,6(23):21711-21720. doi: 10.1021/am506934j

    44. [44]

      Wang H, Chu Y, Pan Q, Yang G, Lai A, Liu Z, Zheng F, Hu S, Huang Y, Li Q. Enhanced interfacial reaction interface stability of Ni-rich cathode materials by fabricating dual-modified layer coating for lithium-ion batteries[J]. Electrochim. Acta, 2021,366137476. doi: 10.1016/j.electacta.2020.137476

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(2)
  • Abstract views(445)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return