Citation: Yu CHEN, Xin-Yu TIAN, Ning-Na CHEN, Rui-Qing LIU, Xiu-Jing LIN, Xiao-Miao FENG. Two-dimensional Ni-Mn MOF grown on carbon cloth for flexible supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2317-2327. doi: 10.11862/CJIC.2023.169 shu

Two-dimensional Ni-Mn MOF grown on carbon cloth for flexible supercapacitors

  • Corresponding author: Xiao-Miao FENG, iamxmfeng@njupt.edu.cn
  • Received Date: 28 June 2023
    Revised Date: 21 September 2023

Figures(9)

  • A 2D nickel-manganese layered double hydroxide was generated on the surface of carbon cloth (CC) by hydrothermal method, and it was converted into a two-dimensional Ni-Mn metal-organic framework Ni-Mn (MOF) by solvothermal method, and its morphology could be maintained well. The effects of molar ratio of Ni and Mn, reaction temperature, and reaction time on the morphology, structure, and properties of the material were investigated. The optimal electrochemical performance of the Ni-Mn MOF/CC electrode was achieved when the molar ratio of Ni and Mn elements was 9∶1, the reaction temperature was 120 ℃, and the reaction time was 12 hours, respectively. The area specific capacitance of the electrode can be reached as high as 4 007.5 mF·cm-2 at a current density of 1 mA·cm-2, and it showed good cycling stability. The electrode can be applied to a flexible symmetric supercapacitor, which can be bent 180°. The capacitance retention rate was 83.6% after 5 000 cycles at a current density of 10 mA·cm-2, demonstrating good cycling stability and flexibility.
  • 加载中
    1. [1]

      JI W J, WANG D, WANG G J, SUN X L, FU Y L. High performance supercapacitors constructed with isomorphic MOFs doped graphene oxide electrode materials[J]. Chinese J. Inorg. Chem., 2021,37(11):1931-1942. doi: 10.11862/CJIC.2021.241

    2. [2]

      NIU B T, XIA W N, LAI S Q, GUO H X, CHEN Z X. Solvent-controlled morphology of Ni-BTC and Ni-BDC metal-organic frameworks for supercapacitors[J]. Chinese J. Inorg. Chem., 2022,38(8):1643-1654. doi: 10.11862/CJIC.2022.160

    3. [3]

      SU L X, WANG X M, JIANG Q Y, ZHANG H M, LU Y W, LIU Q. A two-dimensional Co-based coordination polymer[KCo(pa)(OH)]n as the electrode material of supercapacitors with higher-capacity[J]. Chinese J. Inorg. Chem., 2023,39(8):1481-1488. doi: 10.11862/CJIC.2023.099

    4. [4]

      Du Y Q, Xiao P, Yuan J, Chen J W. Research progress of graphene-based materials on flexible supercapacitors[J]. Coatings, 2020,10(9)892. doi: 10.3390/coatings10090892

    5. [5]

      Wang C, Hu K, Li W J, Wang H Y, Li H, Zuo Y, Zhao C C, Li Z, Yu M, Tan P C, Li Z. Wearable wire-shaped symmetric supercapacitors based on activated carbon-coated graphite fibers[J]. ACS Appl. Mater. Inter., 2018,10(40):34302-34310. doi: 10.1021/acsami.8b12279

    6. [6]

      Kang C S, Ko Y I, Fujisawa K, Yokokawa T, Kim J H, Han J H, Wee J H, Kim Y A, Muramatsu H, Hayashi T. Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications[J]. Carbon Lett., 2020,30(5):527-534. doi: 10.1007/s42823-020-00122-4

    7. [7]

      Ghanashyam G, Jeong H K. Plasma treated carbon nanofiber for flexible supercapacitors[J]. J. Energy Storage, 2021,40102806. doi: 10.1016/j.est.2021.102806

    8. [8]

      Tang M, Wu Y T, Yang J H, Wang H X, Lin T, Xue Y H. Graphene/tungsten disulfide core-sheath fibers: High-performance electrodes for flexible all-solid-state fiber-shaped supercapacitors[J]. J. Alloy. Compd., 2021,858157747. doi: 10.1016/j.jallcom.2020.157747

    9. [9]

      WANG C, LIU Q H, QI C Y, WANG Z Y, ZHAO X L, YANG X W. Synthesis and supercapacitor performances of 0D/2D MXene composite membrane[J]. Chinese J. Inorg. Chem., 2022,38(9):1707-1715. doi: 10.11862/CJIC.2022.178

    10. [10]

      Asbani B, Robert K, Roussel P, Brousse T, Lethien C. Asymmetric micro-supercapacitors based on electrodeposited RuO2 and sputtered VN films[J]. Energy Storage Mater., 2021,37:207-214. doi: 10.1016/j.ensm.2021.02.006

    11. [11]

      Yu F, Pang L, Wang H X. Preparation of mulberry-like RuO2 electrode material for supercapacitors[J]. Rare Met., 2021,40(2):440-447. doi: 10.1007/s12598-020-01561-8

    12. [12]

      Zhou Y, Cheng X Y, Tynan B, Sha Z, Huang F, Islam M S, Zhang J, Rider A N, Dai L M, Chu D W, Wang D W, Han Z J, Wang C H. High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors[J]. Carbon, 2021,184:504-513. doi: 10.1016/j.carbon.2021.08.051

    13. [13]

      Swain N, Mitra A, Saravanakumar B, Balasingam S K, Mohanty S, Nayak S K, Ramadoss A. Construction of three-dimensional MnO2/Ni network as an efficient electrode material for high performance supercapacitors[J]. Electrochim. Acta, 2020,342136041. doi: 10.1016/j.electacta.2020.136041

    14. [14]

      Zhang H, Han X R, Gan R, Guo Z H, Ni Y H, Zhang L. A facile biotemplate-assisted synthesis of mesoporous V2O5 microtubules for high performance asymmetric supercapacitors[J]. Appl. Surf. Sci., 2020,511145527. doi: 10.1016/j.apsusc.2020.145527

    15. [15]

      Zhou Y J, Sun L L, Wu D Y, Li X, Huo P W, Wang H Q, Yan Y S. Preparation of 3D porous g-C3N4@V2O5 composite electrode via simple calcination and chemical precipitation for supercapacitors[J]. J. Alloy. Compd., 2020,817152707. doi: 10.1016/j.jallcom.2019.152707

    16. [16]

      Kung C Y, Wang T L, Lin H Y, Yang C H. A high-performance covalently bonded self-doped polyaniline-graphene assembly film with superior stability for supercapacitors[J]. J. Power Sources, 2021,490229538. doi: 10.1016/j.jpowsour.2021.229538

    17. [17]

      Yang J, Xiong P X, Zheng C, Qiu H Y, Wei M D. Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode[J]. J. Mater. Chem. A, 2014,2(39):16640-16644. doi: 10.1039/C4TA04140B

    18. [18]

      Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications[J]. Energy Environ. Sci., 2012,5(11):9269-9290. doi: 10.1039/c2ee22989g

    19. [19]

      Sule R, Mishra A K, Nkambule T T. Recent advancement in consolidation of MOFs as absorbents for hydrogen storage[J]. Int. J. Energy Res., 2021,45(9):12481-12499. doi: 10.1002/er.6608

    20. [20]

      He H B, Li R, Yang Z H, Chai L Y, Jin L F, Alhassan S I, Ren L L, Wang H Y, Huang L. Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review[J]. Catal. Today, 2021,375:10-29. doi: 10.1016/j.cattod.2020.02.033

    21. [21]

      Zhang X, Qu N, Yang S X, Lei D, Liu A M, Zhou Q. Cobalt induced growth of hollow MOF spheres for high performance supercapacitors[J]. Mater. Chem. Front., 2021,5(1):482-491. doi: 10.1039/D0QM00597E

    22. [22]

      Lv Y, Wang Y Q, Yang M, Mu Z Y, Liu S T, Ding W P, Ding M N. Nitrogen reduction through confined electro-catalysis with carbon nanotube inserted metal-organic frameworks[J]. J. Mater. Chem. A, 2021,9(3):1480-1486. doi: 10.1039/D0TA11797H

    23. [23]

      Luo Z D, Fan S R, Gu C Y, Liu W C, Chen J X, Li B H, Liu J Q. Metal-organic framework (MOF)-based nanomaterials for biomedical applications[J]. Curr. Med. Chem., 2019,26(18):3341-3369. doi: 10.2174/0929867325666180214123500

    24. [24]

      Raje P G, Gurav S R, Waikar M R, Rasal A S, Chang J Y, Sonkawade R G. The review of different dimensionalities based pristine metal organic frameworks for supercapacitor application[J]. J. Energy Storage, 2022,56105700. doi: 10.1016/j.est.2022.105700

    25. [25]

      Ran F T, Xu X Q, Pan D, Liu Y Y, Bai Y P, Shao L. Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device[J]. Nano-Micro Lett., 2020,12(1)46. doi: 10.1007/s40820-020-0382-x

    26. [26]

      Pathak I, Acharya D, Chhetri K, Chandra L P, Subedi S, Muthurasu A, Kim T, Ko T H, Dahal B, Kim H Y. Ti3C2Tx MXene embedded metal-organic framework-based porous electrospun carbon nanofibers as a freestanding electrode for supercapacitors[J]. J. Mater. Chem. A, 2023,11(10):5001-5014. doi: 10.1039/D2TA09726E

    27. [27]

      Dennyson S A, Justin R C, Kale A M, Kim B C. Road map for in situ grown binder-free MOFs and their derivatives as freestanding electrodes for supercapacitors[J]. Small, 2023,19(20)2207713. doi: 10.1002/smll.202207713

    28. [28]

      Liu Q, Guo Z Q, Wang C, Guo S, Xu Z W, Hu C G, Liu Y J, Wang Y L, He J, Wong W Y. A Cobalt-based metal-organic framework nanosheet as the electrode for high-performance asymmetric supercapacitor[J]. Adv. Sci., 2023,10(18)2207545. doi: 10.1002/advs.202207545

    29. [29]

      Sahoo R, Ghosh S, Chand S, Chand Pal S, Kuila T, Das M C. Highly scalable and pH stable 2D Ni-MOF-based composites for high performance supercapacitor[J]. Composites Part B, 2022,245110174. doi: 10.1016/j.compositesb.2022.110174

    30. [30]

      Ye C J, Qin Q Q, Liu J Q, Mao W P, Yan J, Wang Y, Cui J W, Zhang Q, Yang L P, Wu Y C. Coordination derived stable Ni-Co MOFs for foldable all-solid-state supercapacitors with high specific energy[J]. J. Mater. Chem. A, 2019,7(9):4998-5008. doi: 10.1039/C8TA11948A

    31. [31]

      Wang J, Zhong Q, Xiong Y H, Cheng D Y, Zeng Y Q, Bu Y F. Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors[J]. Appl. Surf. Sci., 2019,483:1158-1165. doi: 10.1016/j.apsusc.2019.03.340

    32. [32]

      Yue L G, Chen L, Wang X Y, Lu D Z, Zhou W L, Shen D J, Yang Q, Xiao S F, Li Y Y. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors[J]. Chem. Eng. J., 2023,451138687. doi: 10.1016/j.cej.2022.138687

    33. [33]

      Bhartiya S, Singh R, Singh A, Balal M, Bhardwaj P, Kohli D K, Singh M K. Nitrogen-doped carbon aerogel synthesis by solvothermal gelation for supercapacitor application[J]. J. Solid State Electr., 2022,26(12):2829-2839. doi: 10.1007/s10008-022-05289-6

    34. [34]

      Bardi N, Giannakopoulou T, Vavouliotis A, Trapalis C. Electrodeposited films of graphene, carbon nanotubes, and their mixtures for supercapacitor applications[J]. ACS Appl. Nano Mater., 2020,3(10):10003-10013. doi: 10.1021/acsanm.0c02002

    35. [35]

      Zheng D C, Wen H, Sun X, Guan X, Zhang J, Tian W L, Feng H, Wang H J, Yao Y D. Ultrathin Mn doped Ni-MOF nanosheet array for highly capacitive and stable asymmetric supercapacitor[J]. Chem. Eur. J., 2020,26(71):17149-17155. doi: 10.1002/chem.202003220

    36. [36]

      Zheng S Q, Lim S S, Foo C Y, Haw C Y, Chiu W S, Chia C H, Khiew P S. Solvothermal synthesis of nanostructured nickel-based metal- organic frameworks (Ni-MOFs) with enhanced electrochemical performance for symmetric supercapacitors[J]. J. Mater. Sci., 2023,58(29):11894-11913. doi: 10.1007/s10853-023-08747-2

    37. [37]

      Cheng W R, Lu X F, Luan D Y, Lou X W D. NiMn-based bimetal- organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis[J]. Angew. Chem. Int. Ed., 2020,59(41):18234-18239. doi: 10.1002/anie.202008129

    38. [38]

      Cheng J Y, Chen S M, Chen D, Dong L B, Wang J J, Zhang T L, Jiao T P, Liu B, Wang H, Kai J J, Zhang D Q, Zheng G P, Zhi L J, Kang F Y, Zhang W J. Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D- metal-organic framework/reduced graphene oxide self-assembled papers[J]. J. Mater. Chem. A, 2018,6(41):20254-20266. doi: 10.1039/C8TA06785F

    39. [39]

      Lu P Y, Jiang X T, Guo W L, Wang L, Zhang T, Boyjoo Y, Si W P, Hou F, Liu J, Dou S X, Liang J. A Ni-Co sulfide nanosheet/carbon nanotube hybrid film for high-energy and high-power flexible supercapacitors[J]. Carbon, 2021,178:355-362. doi: 10.1016/j.carbon.2021.02.103

    40. [40]

      Li Y C, Lin L Y. Novel pseudo-parallel activated carbon/carbon cloth electrodes connected in novel series for flexible symmetric supercapacitor with enlarged potential window[J]. Electrochim. Acta, 2020,363137275. doi: 10.1016/j.electacta.2020.137275

  • 加载中
    1. [1]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    2. [2]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    3. [3]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    4. [4]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    5. [5]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    6. [6]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    10. [10]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    11. [11]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    13. [13]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    20. [20]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

Metrics
  • PDF Downloads(9)
  • Abstract views(1384)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return