Citation: Yan XU, Su-Zhi LI, Xin-Xing LI. Synthesis, structures, and luminescent properties of a series of lanthanide carboxylate-phosphonates[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1950-1958. doi: 10.11862/CJIC.2023.167 shu

Synthesis, structures, and luminescent properties of a series of lanthanide carboxylate-phosphonates

  • Corresponding author: Yan XU, xuyan0511@126.com
  • Received Date: 13 May 2023
    Revised Date: 16 June 2023

Figures(6)

  • Three lanthanide carboxylate-phosphonates based on lanthanide nitrate hexahydrate and (5-carboxynaph-thalen-1-yl)phosphonic acid (5-pncH3) formulated as [Pr(5-pnc)(H2O)]·2H2O (1), [Sm(5-pnc)(H2O)]·H2O (2), and [Eu(5-pnc)(H2O)]·H2O (3) has been obtained as single phases under solvothermal conditions. Complexes 1-3 were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR spectra, thermo-gravimetric analysis, and fluorescence spectra. Crystal structures reveal that each lanthanide ion is seven-coordinated by six O atoms from five phosphonate ligands and one O atom from one water molecule. The building blocks [LnO7] of complexes 1-3 are linked into a 1D double metal chain structure by the O—C—O, O—P—O, or —O— units. The 1D double metal chain is fused into a 3D open-framework structure by 5-pnc3-. Complex 3 exhibited very strong characteristic emission bands for the Eu (Ⅲ) ion in the visible region under 330 nm excitation. Complexes 1 and 2 displayed very broad ligand -centered emission bands in the blue light region.
  • 加载中
    1. [1]

      O'Keeffe M, Yaghi O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets[J]. Chem. Rev., 2012,112:675-702. doi: 10.1021/cr200205j

    2. [2]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The chemistry and applications of metal -organic frameworks[J]. Science, 2013,3411230444. doi: 10.1126/science.1230444

    3. [3]

      Li J R, Sculley J, Zhou H C. Metal -organic frameworks for separations[J]. Chem. Rev., 2012,112:869-932. doi: 10.1021/cr200190s

    4. [4]

      Zhao J P, Xu J, Han S D, Wang Q L, Bu X H. A Niccolite structural multiferroic metal -organic framework possessing four different types of bistability in response to dielectric and magnetic modulation[J]. Adv. Mater., 2017,291606966. doi: 10.1002/adma.201606966

    5. [5]

      JU Z F, YUAN D Q. Initial theoretical evaluation of pore structure for metal-organic frameworks[J]. Chinese J. Inorg. Chem., 2013,29(8):1633-1638.  

    6. [6]

      Li A L, Gao Q, Xu J, Bu X H. Proton-conductive metalorganic frameworks: Recent advances and perspectives[J]. Coord. Chem. Rev., 2017,344:54-82. doi: 10.1016/j.ccr.2017.03.027

    7. [7]

      Qiu X, Zhong X, Bai C H, Li Y W. Encapsulation of a metal-organic polyhedral in the pores of a metal -organic framework[J]. J. Am. Chem. Soc., 2016,138(4):1138-1141. doi: 10.1021/jacs.5b12189

    8. [8]

      Rojas S, Rodríguez-Diéguez A, Horcajada P. Metal -organic frameworks in agriculture[J]. ACS Appl. Mater. Interfaces, 2022,14(15):16983-17007. doi: 10.1021/acsami.2c00615

    9. [9]

      Thorarinsdottir A E, Harris T D. Metal -organic framework magnets[J]. Chem. Rev., 2020,120(16):8716-8789. doi: 10.1021/acs.chemrev.9b00666

    10. [10]

      Zhao X, Wang Y X, Li D S, Bu X H, Feng P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018,301705189. doi: 10.1002/adma.201705189

    11. [11]

      Li R J, Li M, Zhou X P, Li D, O'Keeffe M. A highly stable MOF with a rod SBU and a tetracarboxylate linker: Unusual topology and CO2adsorption behaviour under ambient conditions[J]. Chem. Commun., 2014,50:4047-4049. doi: 10.1039/C3CC49684H

    12. [12]

      Wang Z, Li X Y, Liu L W, Yu S Q, Feng Z Y, Tung C H, Sun D. Beyond clusters: Supramolecular networks self-assembled from nano-sized silver clusters and inorganic anions[J]. Chem. -Eur. J., 2016,22:6830-6836. doi: 10.1002/chem.201504728

    13. [13]

      Lusi M, Fechine P B A, Chen K J, Perry J J, Zaworotko M J. A rare cationic building block that generates a new type of polyhedral network with"cross-linked"topology[J]. Chem. Commun., 2016,52:4160-4162. doi: 10.1039/C5CC10203K

    14. [14]

      Ahmed A, McHugh D, Papatriantafyllopoulou C. Synthesis and biomedical applications of highly porous metal -organic frameworks[J]. Molecules, 2022,27:6585-6595. doi: 10.3390/molecules27196585

    15. [15]

      Wu G D, Huang J H, Zang Y, He J, Xu G. Porous field-effect transistors based on a semiconductive metal -organic framework[J]. J. Am. Chem. Soc., 2017,139(4):1360-1363. doi: 10.1021/jacs.6b08511

    16. [16]

      Shu Y, Ye Q Y, Dai T, Xu Q, Hu X Y. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing[J]. ACS Sens., 2021,6(3):641-658. doi: 10.1021/acssensors.0c02562

    17. [17]

      Guo B B, Yin J C, Li N, Fu Z X, Han X, Xu J, Bu X H. Recent progress in luminous particle -encapsulated host -guest metal -organic frameworks for optical applications[J]. Adv. Opt. Mater., 2021,92100283. doi: 10.1002/adom.202100283

    18. [18]

      Xu D D, Dong W W, Li M K, Han H M, Zhao J, Li D S, Zhang Q H. Encapsulating organic dyes in metal -organic frameworks for color -tunable and high -efficiency white-light-emitting properties[J]. Inorg. Chem., 2022,61(51):21107-21114. doi: 10.1021/acs.inorgchem.2c03736

    19. [19]

      Tao X L, Pan M C, Yang X, Yuan Y, Zhuo Y. CDs assembled metal-organic framework: Exogenous coreactant -free biosensing platform with pore confinement -enhanced electrochemiluminescence[J]. Chin. Chem. Lett., 2022,33(11):4803-4807. doi: 10.1016/j.cclet.2022.01.010

    20. [20]

      Firmino A D G, Figueira F, Tome J P C, Paz F A A, Rocha J. Metal-organic frameworks assembled from tetraphosphonic ligands and lanthanides[J]. Coord. Chem. Rev., 2018,355:133-149. doi: 10.1016/j.ccr.2017.08.001

    21. [21]

      Jia J G, Zheng L M. Metal -organic nanotubes: Designs, structures and functions[J]. Coord. Chem. Rev., 2020,403213083. doi: 10.1016/j.ccr.2019.213083

    22. [22]

      Weng G G, Zheng L M. Chiral metal phosphonates: Assembly, structures and functions[J]. Sci. China Chem., 2020,63(5):619-636. doi: 10.1007/s11426-020-9707-4

    23. [23]

      Liu B, Liu J C, Shen Y, Feng J S, Bao S S, Zheng L M. Polymorphic layered copper phosphonates: Exfoliation and proton conductivity studies[J]. Dalton Trans., 2019,48:6539-6545. doi: 10.1039/C9DT00970A

    24. [24]

      Huang J, Ding H M, Xu Y, Zeng D, Zhu H, Zang D M, Bao S S, Ma Y Q, Zheng L M. Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination compounds[J]. Nat. Commun., 2017,8:2131-2142. doi: 10.1038/s41467-017-02260-2

    25. [25]

      Huang X D, Wen G H, Bao S S, Jia J G, Zheng L M. Thermo -and light -triggered reversible interconversion of dysprosium -anthracene complexes and their responsive optical, magnetic and dielectric properties[J]. Chem. Sci., 2021,12:929-937. doi: 10.1039/D0SC04851H

    26. [26]

      Wen G H, Chen X M, Xu K, Xu X J, Bao S S, Zheng L M. Uranyl phosphonates: Crystalline materials and nanosheets for temperature sensing[J]. Dalton Tran., 2021,50:17129-17139. doi: 10.1039/D1DT02977K

    27. [27]

      Zeng D, Ren M, Bao S S, Cai Z S, Xu C, Zheng L M. Polymorphic lanthanide phosphonates showing distinct magnetic behavior[J]. Inorg. Chem., 2016,55(11):5297-5304. doi: 10.1021/acs.inorgchem.6b00280

    28. [28]

      Li G M, Xu F, Han S D, Pan J, Wang G M. Hybrid photochromic lanthanide phosphonate with multiple photoresponsive functionalities[J]. Inorg. Chem., 2022,61(21):8379-8385. doi: 10.1021/acs.inorgchem.2c01217

    29. [29]

      Fu R B, Hua S G, Wu X T. Rapid and sensitive detection of nitroaro-matic explosives by using new 3D lanthanide phosphonates[J]. J. Mater. Chem. A, 2017,5:1952-1956. doi: 10.1039/C6TA10152F

    30. [30]

      Tang S F, Song J L, Li X L, Mao J G. Luminescent lanthanide(Ⅲ) carboxylate -phosphonates with helical tunnels[J]. Cryst. Growth Des., 2006,6(10):2322-2326. doi: 10.1021/cg060248l

    31. [31]

      Zhou T H, Yi F Y, Li P X, Mao J G. Synthesis, crystal structures, and luminescent properties of two series of new lanthanide(Ⅲ) amino-carboxylate-phosphonates[J]. Inorg. Chem., 2010,49(3):905-915. doi: 10.1021/ic901621x

    32. [32]

      Tang S F, Song J L, Mao J G. Syntheses, crystal structures, and characterizations of a series of new layered lanthanide carboxylate-phos-phonates[J]. Eur. J. Inorg. Chem., 2006:2011-2019.

    33. [33]

      Ayi A A, Kinnibrugh T L, Clearfield A. Hydrothermal synthesis and structural characterization of ammonium ion-templated lanthanide(Ⅲ) carboxylate-phosphonates[J]. Front. Chem., 2014,2:1-8.

    34. [34]

      Liu B, Xu Y, Bao S S, Huang X D, Liu M, Zheng L M. Enantioen-riched cobalt phosphonate containing Δ -type chains and showing slow magnetization relaxation[J]. Inorg. Chem., 2016,55:9521-9523. doi: 10.1021/acs.inorgchem.6b01854

    35. [35]

      Eliseevaa S V, Bünzli J C. Lanthanide luminescence for functional materials and bio-sciences[J]. Chem. Soc. Rev., 2010,39:189-227. doi: 10.1039/B905604C

    36. [36]

      Kariaka N S, Trush V A, Dyakonenko V V, Shishkina S V, Smola S S, Rusakova N V, Sliva T Y, Gawryszewska P, Carneiro Neto A N, Malta O L, Amirkhanov V M. New luminescent lanthanide tetrakis-complexes NEt4[LnL4] based on dimethyl-N-benzoylamidophos-phate[J]. ChemPhysChem, 2022,23e202200129. doi: 10.1002/cphc.202200129

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    11. [11]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    12. [12]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    13. [13]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    18. [18]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    19. [19]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    20. [20]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

Metrics
  • PDF Downloads(3)
  • Abstract views(311)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return