Citation: Yu-Ke ZHU, Xiao-Jia JIANG, Jia-Yi CHEN, Xiao-Hang FU, Li-Guang WU, Ting WANG. Mechanism and pathways for degrading tetracycline via photocatalytic synergistic peroxysulfate-activated catalytic oxidation[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1857-1868. doi: 10.11862/CJIC.2023.164 shu

Mechanism and pathways for degrading tetracycline via photocatalytic synergistic peroxysulfate-activated catalytic oxidation

Figures(10)

  • Aiming at enhancing the degradation efficiency of antibiotics in slightly polluted water bodies, the photocatalytic synergistic sodium peroxysulfate (PDS)-activated catalytic oxidation using chiral mesoporous TiO2 under irradiation of visible light (PDS/vis-TiO2) was employed to degrade tetracycline (TC). The differences in active species and degradation pathways of PDS activation (PDS/TiO2), visible light photocatalysis (vis-TiO2), and PDS/vis-TiO2 systems using mesoporous TiO2 as catalysts for TC degradation were comparatively studied. The results showed that the asymmetric helical stacking structure introduced abundant Ti3+ into chiral mesoporous TiO2, not only improving its visible light response but also activating PDS by Ti3+/Ti4+ couples to form free radicals. Both the photogenerated holes h+ and the free radicals (like ·OH) in the PDS/vis-TiO2 system could simultaneously participate in TC degradation. Within 5 h, the removal rate of TC (the concentration of TC in the solution was 5 mg·L-1) using the PDS/vis-TiO2 system could reach over 95%, far exceeding that of the PDS/TiO2 system (with a TC removal rate of 48.9%) and the vis-TiO2 system (with a TC removal rate of 71.1%). PDS/vis-TiO2 system had a high removal rate of TC in solutions with different concentrations, and the degradation all followed a first-order kinetic reaction process. Even when the initial concentration of TC reached 15 mg·L-1, the 5 h removal rate of TC by PDS/vis-TiO2 system could still reach 67.2%, which further indicated that the PDS synergistic photocatalysis had an effective ability to degrade TC. However, the removal rate of TC at low concentrations by PDS/vis-TiO2 was faster than using the same amount of TiO2 catalyst and PDS. Added PDS in the photocatalytic system would be activated by the photo-generated electrons to generate free radicals, which then consume photo-generated electrons to improve the separation rate of photo-generated holes and electrons, thus achieving synergistic enhancement on the pollutant degradation. Additionally, the free radicals after PDS activation would also enhance TC degradation. The density functional theory calculation and intermediate product analysis results indicate that the degradation pathway of TC in the PDS/vis-TiO2 system includes the degradation pathway of attacking TC by h+, as well as the degradation pathway of TC after the free radicals attack.
  • 加载中
    1. [1]

      Makkaew P, Kongprajug A, Chyerochana N, Sresung M, Precha N, Mongkolsuk S, Sirikanchana K. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters[J]. Int. J. Hyg. Environ. Health, 2021,238113859. doi: 10.1016/j.ijheh.2021.113859

    2. [2]

      GAO H, LI B, YAO Z W. Advances in research on the presence and environmental behavior of antibiotics in the marine environment[J]. Huanjing Huaxue-Environmental Chemistry, 2023,42(3):779-791.  

    3. [3]

      Lyu J, Yang L S, Zhang L, Ye B X, Wang L. Antibiotics in soil and water in China - A systematic review and source analysis[J]. Environ. Pollut., 2020,266(1)115147.

    4. [4]

      Li S S, Gao H, Zhang H B, Wei G K, Shu Q, Li R J, Jin S C, Na G S, Shi Y L. The fate of antibiotic resistance genes in the coastal lagoon with multiple functional zones[J]. J. Environ. Sci., 2023,128:93-106. doi: 10.1016/j.jes.2022.07.021

    5. [5]

      Hiller C X, Hubner U, Fajnorova S, Schwartz T, Drewes J E. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review[J]. Sci. Total Environ., 2019,685:596-608. doi: 10.1016/j.scitotenv.2019.05.315

    6. [6]

      Wei Z D, Liu J Y, Shangguan W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production[J]. Chin. J. Catal., 2020,41(10):1440-1450. doi: 10.1016/S1872-2067(19)63448-0

    7. [7]

      Zhu T T, Su Z X, Lai W X, Zhang Y B, Liu Y W. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Sci. Total Environ., 2021,776145906. doi: 10.1016/j.scitotenv.2021.145906

    8. [8]

      WANG J L, DONG M R, ZHANG Q C, LIN W S, XING Y. Preparation of Bi2MoO6 microspheres with hollow structure and degradation performance of ofloxacin antibiotic[J]. Chinese J. Inorg. Chem., 2020,36(5):827-834.  

    9. [9]

      Lee J, von Gunten U, Kim J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environ. Sci. Technol., 2020,54(6):3064-3081. doi: 10.1021/acs.est.9b07082

    10. [10]

      Mohamed R M, Kadi M W, Ismail A A. A facile synthesis of mesoporous α-Fe2O 3/TiO2 nanocomposites for hydrogen evolution under visible light[J]. Ceram. Int., 2020,46(10):15604-15612. doi: 10.1016/j.ceramint.2020.03.107

    11. [11]

      Ding Y B, Fu L B, Peng X Q, Lei M, Wang C J, Jiang J Z. Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: Certainties and uncertainties[J]. Chem. Eng. J., 2022,427131776. doi: 10.1016/j.cej.2021.131776

    12. [12]

      ZHA F J, LIU Q, WANG J Y, LIN Y H, WANG C Y, LI Y X. One-dimensional TiO2 anatase/rutile heterophase junctions: Preparation and photocatalytic properties for degrading formaldehyde[J]. Chinese J. Inorg. Chem., 2022,38(3):510-518.  

    13. [13]

      Liu J Z, Tang J, Wan J J, Wu C X, Graham B, Kerr P G, Wu Y H. Functional sustainability of periphytic biofilms in organic matter and Cu2+ removal during prolonged exposure to TiO2 nanoparticles[J]. J. Hazard. Mater., 2019,370:4-12. doi: 10.1016/j.jhazmat.2017.08.068

    14. [14]

      Sharma S, Shree B, Aditika , Sharma A, Irfan M, Kumar P. Nanoparticle-based toxicity in perishable vegetable crops: Molecular insights, impact on human health and mitigation strategies for sustainable cultivation[J]. Environ. Res., 2022,212113168. doi: 10.1016/j.envres.2022.113168

    15. [15]

      Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical applications of TiO2 nanostructures: Recent advances[J]. Int. J. Nanomed., 2020,15:3447-3470. doi: 10.2147/IJN.S249441

    16. [16]

      Wang T, Li Y, Wu W T, Zhang Y L, Wu L G, Chen H L. Effect of chiral-arrangement on the solar adsorption of black TiO2-SiO2 mesoporous materials for photodegradation and photolysis[J]. Appl. Surf. Sci., 2021,537148025. doi: 10.1016/j.apsusc.2020.148025

    17. [17]

      Dong Z Y, Zhang Q, Chen B Y, Hong J M. Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: Mechanism and efficiency[J]. Chem. Eng. J., 2019,357:337-347. doi: 10.1016/j.cej.2018.09.179

    18. [18]

      Zhou J, Cheng H, Ma J F, Peng M G, Kong Y, Komarneni S. Persulfate activation by MnCuS nanocomposites for degradation of organic pollutants[J]. Sep. Purif. Technol., 2021,261118290. doi: 10.1016/j.seppur.2020.118290

    19. [19]

      FU X H, WANG L X, LI Y, WU L G, WANG T. Chiral TiO2-based photocatalysts with visible light response and their photo-degradation of organic pollutants[J]. Acta Scientiae Circumstantiae, 2021,41(12):4862-4870.  

    20. [20]

      Wang T, Li B R, Wu L G, Yin Y B, Jiang B Q, Lou J Q. Enhanced performance of TiO2/reduced graphene oxide doped by rare-earth ions for degrading phenol in seawater excited by weak visible light[J]. Adv. Powder Technol., 2019,30(9):1920-1931. doi: 10.1016/j.apt.2019.06.011

    21. [21]

      LIU X T, ZHU H C, LI Y, WANG F, ZHANG Y T, JIN G P, WEI F Y. A high-efficiency visible-light-driven mesoporous AgI@Fe-MIL-88B-NH2 photocatalyst via Z-scheme mechanism[J]. Chinese J. Inorg. Chem., 2019,35(7):1255-1266.  

    22. [22]

      Du Y E, Li W X, Bai Y, Huangfu Z W, Wang W J, Chai R D, Chen C D, Yang X J, Feng Q. Facile synthesis of TiO2/Ag3PO4 composites with co-exposed high-energy facets for efficient photodegradation of rhodamine B solution under visible light irradiation[J]. RSC Adv., 2020,10(41):24555-24569. doi: 10.1039/D0RA04183A

    23. [23]

      Duan L L, Hung C T, Wang J X, Wang C Y, Ma B, Zhang W, Ma Y Z, Zhao Z W, Yang C C, Zhao T C, Peng L, Liu D, Zhao D Y, Li W. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets[J]. Angew. Chem. Int. Ed., 2022,61(43)e202211307. doi: 10.1002/anie.202211307

    24. [24]

      Sabri M, Habibi-Yangjeh A, Chand H, Krishnan V. Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: Facile synthesis and high photocatalytic performance[J]. Sep. Purif. Technol., 2020,250117268. doi: 10.1016/j.seppur.2020.117268

    25. [25]

      Chen Y, Bai X, Ji Y, Chen D. Enhanced activation of peroxymonosulfate using ternary MOFs-derived MnCoFeO for sulfamethoxazole degradation: Role of oxygen vacancies[J]. J. Hazard. Mater., 2023,441129912. doi: 10.1016/j.jhazmat.2022.129912

    26. [26]

      LIANG M J, DENG N, XIANG X Y, MEI Y, YANG Z Y, YANG Y, YANG S J. Bi/BiVO4 & Bi4V2O11 composite catalysts: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2019,35(2):263-270.  

    27. [27]

      MAO J Y, HUANG Y W, HUANG Z Q, LIU X P, XUE H, XIAO L R. Different photocatalytic performances for tetracycline hydrochloride degradation of p-block metal oxides Ga2O3 and Sb2O3[J]. Chinese J. Inorg. Chem., 2021,37(3):509-515.  

    28. [28]

      Cao Y X, Yuan X Z, Chen H Y, Wang H, Chen Y, Chen J Y, Huang H M, Mou Y, Shangguan Z C, Li X. Rapid concurrent photocatalysis-persulfate activation for ciprofloxacin degradation by Bi2S3 quantum dots-decorated MIL-53(Fe) composites[J]. Chem. Eng. J., 2023,456140971. doi: 10.1016/j.cej.2022.140971

    29. [29]

      Wu Y Q, Zhao X Y, Tian J T, Liu S X, Liu W Y, Wang T Y. Heterogeneous catalytic system of photocatalytic persulfate activation by novel Bi2WO 6 coupled magnetic biochar for degradation of ciprofloxacin[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2022,651129667. doi: 10.1016/j.colsurfa.2022.129667

    30. [30]

      XU H T, FU X H, FENG W H, WANG T. Photo-degradation mechanism and pathway for tetracycline in simulated seawater under irradiation of visible light[J]. Environmental Science, 2023,44(6):3260-3269. doi: 10.13227/j.hjkx.202206237

    31. [31]

      Shi W L, Hao C C, Fu Y M, Guo F, Tang Y B, Yan X. Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots[J]. Chem. Eng. J., 2022,433(3)133741.

    32. [32]

      XIE K, YE J M, SUN P, WANG H, MA D Z. Non-radical degradation of paracetamol by persulfate activation with modified ordered mesoporous carbon[J]. Acta Scientiae Circumstantiae, 2022,42(4):149-156.  

    33. [33]

      Liu X N, Li F, Liu Y, Li P S, Chen L, Li B, Qian T W, Liu W. Degradation of diclofenac in a photosensitization-like photocatalysis process using palladium quantum dots deposited graphite carbon nitride under solar light[J]. J. Environ. Chem. Eng., 2022,10(3)107545. doi: 10.1016/j.jece.2022.107545

    34. [34]

      Qi J, Yang X, Pan P Y, Huang T, Yang X, Wang C C, Liu W. Interface engineering of Co(OH)2 nanosheets growing on the KNbO3 perovskite based on electronic structure modulation for enhanced peroxymonosulfate activation[J]. Environ. Sci. Technol., 2022,56:5200-5212. doi: 10.1021/acs.est.1c08806

    35. [35]

      Kong W J, Gao Y, Yue Q Y, Li Q, Gao B Y, Kong Y, Wang X D, Zhang P, Wang Y. Performance optimization of CdS precipitated graphene oxide/polyacrylic acid composite for efficient photodegradation of chlortetracycline[J]. J. Hazard. Mater., 2020,388121780.

    36. [36]

      Ji H D, Liu W, Sun F B, Huang T B, Chen L, Liu Y, Qi J J, Xie C H, Zhao D Y. Experimental evidences and theoretical calculations on phenanthrene degradation in a solar-light-driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: Insights into reactive sites and energy evolution[J]. Chem. Eng. J., 2021,419129605.

    37. [37]

      Ma L L, Xu J Y, Liu Y C, An Y T, Pan Z C, Yang B, Li L L, Hu T, Lai B. Improved degradation of tetracycline by Cu-doped MIL-101 (Fe) in a coupled photocatalytic and persulfate oxidation system: Efficiency, mechanism, and degradation pathway[J]. Sep. Purif. Technol., 2023,305112450.

    38. [38]

      Zhang Y, Zhou J B, Chen J H, Feng X Q, Cai W Q. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation[J]. J. Hazard. Mater., 2020,392122315.

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(21)
  • Abstract views(870)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return