Citation: Cun WANG, Xiao-Chuan ZOU, Yuan-Bo HUANG, Jing HU, Ming-Chuan DENG, Xia FENG. Electrochemical aptamer sensor for thrombin based on cerium complex signal probe[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1931-1940. doi: 10.11862/CJIC.2023.162 shu

Electrochemical aptamer sensor for thrombin based on cerium complex signal probe

  • Corresponding author: Xiao-Chuan ZOU, zxcvip2003@163.com
  • Received Date: 3 January 2023
    Revised Date: 17 September 2023

Figures(9)

  • In this work, a series of cerium coordination polymers (Ce-COPs) with different morphology and electro- chemical signals were synthesized by a simple hydrothermal method using Ce3+ as the central ion and N, N-dimethyl- formamide as the organic ligand through temperature regulation. The polyhedral Ce-COP with the largest electro- chemical signal was selected as the signal probe. Then, a sensitive thrombin (TB) aptamer sensor was designed through the specific recognition between TB and TB aptamer. Under the optimal experimental conditions, the linear range for TB detection was from 1.0 fmol·L-1 to 1.0 nmol·L-1, and the detection limit was 0.94 fmol·L-1. In addition, our method is similar to the results of commercial human thrombin (TM) ELISA reagent detection. In a word, our biosensor possesses good sensitivity, specificity, selectivity, and stability.
  • 加载中
    1. [1]

      Gómez-Arconada L, Díaz-Fernández A, Ferapontova E E. Ultrasensitive disposable apatasensor for reagentless electrocatalytic detection of thrombin: An O2-dependent hemin-G4-aptamer assay on gold screen-printed electrodes[J]. Talanta, 2022,245(11)123456.

    2. [2]

      Sun J F, Wang G X, Cheng H, Han Y F, Li Q, Jiang C. An antifouling electrochemical aptasensor based on hyaluronic acid functionalized polydopamine for thrombin detection in human serum[J]. Bioelectrochemistry, 2022,145108073. doi: 10.1016/j.bioelechem.2022.108073

    3. [3]

      LI D L, GU M Q, WANG M, CHI K N, ZHANG X, DENG Y, MA Y C, HU R, YANG Y H. Preparation of thrombin aptasensor based on the metal‑organic framework Fe‑MIL‑88NH2[J]. Chem. J. Chinese Universities, 2019,40(3):439-447.  

    4. [4]

      Huang Y, Zhao S L, Chen Z F, Shi M, Chen J, Liang H. An amplified chemiluminescence aptasensor based on bi-resonance energy transfer on gold nanoparticles and exonuclease Ⅲ-catalyzed target recycling[J]. Chem. Commun., 2012,48(97):11877-11879. doi: 10.1039/c2cc37130h

    5. [5]

      Liao X J, Zhang C Y, Machuki achwa J O, Wen X Q, Tang Q L, Shi H L, Gao F L. Proximity hybridization-triggered DNA assembly for label-free surface-enhanced Raman spectroscopic bioanalysis[J]. Anal. Chim. Acta, 2020,1139(47):42-49.

    6. [6]

      Cui H Y, Fu X Q, Yang L, Xing S, Wang X F. 2D titanium carbide nanosheets based fluorescent aptasensor for sensitive detection of thrombin[J]. Talanta, 2021,228(1)122219.

    7. [7]

      Su J, Liu W H, Chen S X, Deng W P, Dou Y Z, Zhao Z H, Li J Y, Li Z H, Yin H, Ding X T, Song S P. A carbon-based DNA framework nano-bio interface for biosensing with high sensitivity and a high signal-to-noise ratio[J]. ACS Sens., 2020,5(12):3979-3987. doi: 10.1021/acssensors.0c01745

    8. [8]

      Ma C, Cao Y, Gou X D, Jun J J. Recent progress in electrochemiluminescence sensing and imaging[J]. Anal. Chem., 2020,92(1):431-454. doi: 10.1021/acs.analchem.9b04947

    9. [9]

      Blasi D, Sarcina L, Tricase A, Stefanachi A, Leonetti F, Alberga D, Mangiatordi G F, Manoli K, Scamarcio G, Picca R A, Torsi L. Enhancing the sensitivity of biotinylated surfaces by tailoring the design of the mixed self-assembled monolayer synthesis[J]. ACS Omega, 2020,5(27):16762-16771. doi: 10.1021/acsomega.0c01717

    10. [10]

      Zheng Y N, Yuan Y L, Chai Y Q, Yuan R. L-cysteine induced manganese porphyrin electrocatalytic amplification with 3D DNA‑Au@Pt nanoparticles as nanocarriers for sensitive electrochemical aptasensor[J]. Biosens. Bioelectron., 2016,798:6-91.

    11. [11]

      Hu G B, Xiong C Y, Liang W B, Yang Y, Yao L Y, Huang W, Luo W, Yuan R, Xiao D R. Highly stable Ru-complex-grafted 2D metal-organic layer with superior electrochemiluminescent efficiency as a sensing platform for simple and ultrasensitive detection of mucin 1[J]. Biosens. Bioelectron., 2019,135:95-101. doi: 10.1016/j.bios.2019.03.026

    12. [12]

      Wang C, Han Q, Mo F J, Chen M, Xiong Z W, Fu Y Z. Novel luminescent nanostructured coordination polymer: Facile fabrication and application in electrochemiluminescence biosensor for microRNA-141 detection[J]. Anal. Chem., 2020,92(18):12145-12151. doi: 10.1021/acs.analchem.0c00130

    13. [13]

      Zhang X X, Liao F S, Wang M, Zhang J, Xu B X, Zhang L, Xiong J, Xiong W. Enzyme-free recycling amplification-based sensitive electrochemical thrombin aptasensor[J]. Electroanalysis, 2021,33:1152-1159. doi: 10.1002/elan.202060496

    14. [14]

      Chen Y, Li S B, Zhang L, Jing T, Wang J X, Zhao L J, Li F B, Li C, Sun J Y. Facile and fast synthesis of three-dimensional Ce-MOF/Ti3C2TX MXene composite for high performance electrochemical sensing of L-tryptophan[J]. J. Solid. State. Chem., 2022,308122919. doi: 10.1016/j.jssc.2022.122919

    15. [15]

      Zhang L, Sun M, Jing T, Li S B, Ma H Y. A facile electrochemical sensor based on green synthesis of Cs/Ce-MOF for detection of tryptophan in human serum[J]. Colloid. Surface A, 2022,648(5)129225.

    16. [16]

      Tu X L, Xie Y, Ma X, Gao F, Gong L, Wang D W, Lu L M, Liu G B, Yu Y F, Huang X G. Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen[J]. J. Electroanal. Chem., 2019,848(1)113268.

    17. [17]

      Huang H P, Chen Y N, Chen Z Z, Chen J L, Hu Y M, Zhu J J. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol[J]. J. Hazard. Mater., 2021,416(15)125895.

    18. [18]

      Chen F, Wang Y M, Guo W W, Yin X B. Color-tunable lanthanide metal-organic framework gels[J]. Chem Sci., 2019,10(6):1644-1650. doi: 10.1039/C8SC04732D

    19. [19]

      Jing P, Xu W J, Yi H Y, Wu Y M, Bai L J, Yuan R. An amplified electrochemical aptasensor for thrombin detection based on pseudobienzymic Fe3O4-Au nanocomposites and electroactive hemin/G-quadruplex as signal enhancers[J]. Analyst, 2014,139(7):1756-1761. doi: 10.1039/c3an02237d

    20. [20]

      Shi J, Claussen J C, McLamore E S, Haque A U, Jaroch D, Diggs A R, Calvo-Marzal P, Rickus J L, Porterfield D M. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors[J]. Nanotechnol., 2011,22355502. doi: 10.1088/0957-4484/22/35/355502

    21. [21]

      Zhang J, Song S P, Wang L, H , Pan D, Fan C H. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA[J]. Nat. Protoc., 2007,2:2888-2895. doi: 10.1038/nprot.2007.419

    22. [22]

      Jiang J Z, Cai Q, Deng M H. Construction of electrochemical aptamer sensor based on Pt-coordinated titanium-based porphyrin MOF for thrombin detection[J]. Front. Chem., 2022,9812983. doi: 10.3389/fchem.2021.812983

    23. [23]

      Zhang Q X, Fan G C, Chen W, Liu Q, Zhang X, Zhang X X, Liu Q Y. Electrochemical sandwich-type thrombin aptasensor based on dual signal amplification strategy of silver nanowires and hollow Au-CeO2[J]. Biosens. Bioelectron., 2020,150111846. doi: 10.1016/j.bios.2019.111846

    24. [24]

      Zhu J, Gan H Y, Wu J, Ju H X. Molecular machine powered surface programmatic chain reaction for highly sensitive electrochemical detection of protein[J]. Anal. Chem., 2018,90(8):5503-5508. doi: 10.1021/acs.analchem.8b01217

    25. [25]

      Park K. Impedance technique-based label-free electrochemical aptasensor for thrombin using single-walled carbon nanotubes-casted screen-printed carbon electrode[J]. Sensors, 2022,22(7)2699. doi: 10.3390/s22072699

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(0)
  • Abstract views(378)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return