Citation: Wang-Yang DUAN, Yue-Huan CHENG, Ji-Song HU, Xin-Guo MA, Ling PEI. Schottky barrier of blue phosphorus/graphene heterostructure regulated by the adsorption of oxygen atoms[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1980-1990. doi: 10.11862/CJIC.2023.161 shu

Schottky barrier of blue phosphorus/graphene heterostructure regulated by the adsorption of oxygen atoms

  • Corresponding author: Ling PEI, 47160162@qq.com
  • Received Date: 9 March 2023
    Revised Date: 16 September 2023

Figures(8)

  • Controlling the p-type transmission operation of nanoelectronics remains a major challenge in lowering the Schottky barrier. To solve this problem, we systematically investigated the effects of O atoms adsorption doped on the interlayer interactions and electronic properties of the BP/graphene (BP=blue phosphorus) heterostructures by first-principles calculations incorporating a semiempirical dispersion-correction scheme. The results show that the interfacial binding can be enhanced by O atom adsorption doped inside the interface. The height of the Schottky barrier can be adjusted by changing the concentration of O atom adsorption doped inside the interface. It is further found that by increasing the concentration of O atoms inside the interface, a low p - type Schottky barrier can be obtained, thereby achieving efficient charge transfer. Finally, it is confirmed that the redistribution of the interfacial charge leads to the movement of the Fermi level, which determines the height of the Schottky barrier.
  • 加载中
    1. [1]

      Chen H, Chen J, Ning P, Chen X, Liang J, Yao X, Chen D, Qin L, Huang Y, Wen Z. 2D heterostructure of amorphous cofeb coating black phosphorus nanosheets with optimal oxygen intermediate absorption for improved electrocatalytic water oxidation[J]. ACS Nano, 2021,15(7):12418-12428. doi: 10.1021/acsnano.1c04715

    2. [2]

      Zhang M, Ye M, Wang W, Ma C, Wang S, Liu Q, Lian T, Huang J, Lin Z. Synergistic cascade carrier extraction via dual interfacial positioning of ambipolar black phosphorene for high- efficiency perovskite solar Cells[J]. Adv. Mater., 2020,32(28)e2000999. doi: 10.1002/adma.202000999

    3. [3]

      Tao Y P, Huang T, Ding C X, Feng Y, Tan D M, Wang F X, Xie Q J, Yao S Z. Few-layer phosphorene: An emerging electrode material for electrochemical energy storage[J]. Appl. Mater. Today, 2019,15:18-33. doi: 10.1016/j.apmt.2018.12.008

    4. [4]

      Fang R H, Cui X Y, Khan M A, Stampfl C, Ringer S P, Zheng R K. Strain-engineered ultrahigh mobility in phosphorene for terahertz transistors[J]. Adv. Electron. Mater., 2019,5(3)1800797. doi: 10.1002/aelm.201800797

    5. [5]

      Wu M, Fu H, Zhou L, Yao K, Zeng X C. Nine new phosphorene polymorphs with non- honeycomb structures: a much extended family[J]. Nano Lett., 2015,15(5):3557-3562. doi: 10.1021/acs.nanolett.5b01041

    6. [6]

      He C, Zhang C, Tang C, Ouyang T, Li J, Zhong J. Five low energy phosphorene allotropes constructed through gene segments recombination[J]. Sci. Rep., 2017,746431. doi: 10.1038/srep46431

    7. [7]

      Zhang L, Huang H, Zhang B, Gu M, Zhao D, Zhao X, Li L, Zhou J, Wu K, Cheng Y, Zhang J. Structure and properties of violet phosphorus and its phosphorene exfoliation[J]. Angew. Chem. Int. Ed., 2020,59(3):1074-1080. doi: 10.1002/anie.201912761

    8. [8]

      Zhu Z, Tomanek D. Semiconducting layered blue phosphorus: a computational study[J]. Phys. Rev. Lett., 2014,112(17)176802. doi: 10.1103/PhysRevLett.112.176802

    9. [9]

      Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets[J]. Sci. Rep., 2015,59961. doi: 10.1038/srep09961

    10. [10]

      Li J Z, Sun X T, Xu C Y, Zhang X Y, Pan Y Y, Ye M, Song Z G, Quhe R G, W Y Y, Zhang H, Guo Y, Yang J B, Pan F, Lu J. Electrical contacts in monolayer blue phosphorene devices[J]. Nano Res., 2018,11(4):1834-1849. doi: 10.1007/s12274-017-1801-2

    11. [11]

      Montes E, Schwingenschlögl U. High-Performance Field-Effect Transistors Based on alphaP and betaP[J]. Adv. Mater., 2019,31(18)e1807810. doi: 10.1002/adma.201807810

    12. [12]

      Zhu S C, Hu T Y, Yip C T, Yao K L, Lam C H. Interface effect between blue phosphorus and metals[J]. Phys. Lett. A, 2020,384(23)126554. doi: 10.1016/j.physleta.2020.126554

    13. [13]

      Li H L, Cui Y T, Luo H J, Wang T, Li D M. Tuneable Schottky barrier in van der Waals graphene-blue phosphorus heterojunction[J]. Physica B Condens. Matter, 2019,560:75-80. doi: 10.1016/j.physb.2019.02.027

    14. [14]

      Musso T, Kumar P V, Foster A S, Grossman J C. Graphene oxide as a promising hole injection layer for MoS2- based electronic devices[J]. ACS Nano, 2014,8(11):11432-11439. doi: 10.1021/nn504507u

    15. [15]

      Tung R T. Chemical bonding and fermi level pinning at metal-semiconductor interfaces[J]. Phys. Rev. Lett., 2000,84:6078-6081. doi: 10.1103/PhysRevLett.84.6078

    16. [16]

      Tung R T. The physics and chemistry of the Schottky barrier height[J]. Appl. Phys. Rev., 2014,1(1)011304. doi: 10.1063/1.4858400

    17. [17]

      Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X. Approaching the schottky- mott limit in van der waals metal-semiconductor junctions[J]. Nature, 2018,557(7707):696-700. doi: 10.1038/s41586-018-0129-8

    18. [18]

      Loh K P, Bao Q L, Ang P K, Yang J X. The chemistry of graphene[J]. J. Mater. Chem., 2010,20(12)2277. doi: 10.1039/b920539j

    19. [19]

      Zhu J D, Zhang J C, Hao Y. Tunable schottky barrier in blue phosphorus- graphene heterojunction with normal strain[J]. Jpn. J. Appl. Phys., 2016,55(8)080306. doi: 10.7567/JJAP.55.080306

    20. [20]

      Liang J M, Lei J T, Wang Y, Ding Y, Shen Y, Deng X H. High performance terahertz anisotropic absorption in graphene- black phos- phorus heterostructure*[J]. Chin. Phys. B, 2020,29(8)087805. doi: 10.1088/1674-1056/ab9cbf

    21. [21]

      Guangdong University of Technology. Preparation method of electropatterned black phosphorene/graphene electrode and apparatus thereof: CN202111004595.4. 2021-11-30.

    22. [22]

      Li S T, Zhang Y H, Huang H W. Black phosphorus- based hetero- structures for photocatalysis and photoelectrochemical water splitting[J]. J. Energy Chem., 2022,67:745-779. doi: 10.1016/j.jechem.2021.11.023

    23. [23]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    24. [24]

      Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys. Rev. Lett., 1980,45(7):566-569. doi: 10.1103/PhysRevLett.45.566

    25. [25]

      Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J. Comput. Chem., 2006,27(15):1787-1799. doi: 10.1002/jcc.20495

    26. [26]

      Ortmann F, Bechstedt F, Schmidt W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys. Rev. B, 2006,73(20)205101. doi: 10.1103/PhysRevB.73.205101

    27. [27]

      Ma X, Wei Y, Wei Z, He H, Huang C, Zhu Y. Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity[J]. J. Colloid Interface Sci., 2017,508:274-281. doi: 10.1016/j.jcis.2017.08.037

    28. [28]

      Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    29. [29]

      Zhang J L, Zhao S, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z Y, Chen W. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus[J]. Nano Lett., 2016,16(8):4903-4908. doi: 10.1021/acs.nanolett.6b01459

    30. [30]

      Xie J F, Si M S, Yang D Z, Zhang Z Y, Xue D S. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations[J]. J. Appl. Phys., 2014,116(7)073704. doi: 10.1063/1.4893589

    31. [31]

      Flores M Z, Autreto P A, Legoas S B, Galvao D S. Graphene to graphane: a theoretical study[J]. Nanotechnology, 2009,20(46)465704. doi: 10.1088/0957-4484/20/46/465704

    32. [32]

      Xie Y Z, Liu Y, Zhao Y D, Tsang Y H, Lau S P, Huang H T, Chai Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode[J]. J. Mater. Chem. A, 2014,2(24):9142-9149. doi: 10.1039/C4TA00734D

    33. [33]

      Zhang J, Ren F, Deng M, Wang Y. Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first- principles study[J]. Phys. Chem. Chem. Phys., 2015,17(15):10218-10226. doi: 10.1039/C4CP06089J

    34. [34]

      Van de Walle C G, Neugebauer J. First- principles calculations for defects and impurities: Applications to III- nitrides[J]. J. Appl. Phys., 2004,95(8):3851-3879. doi: 10.1063/1.1682673

    35. [35]

      Chen X Z, Zhao X J, Kong Z Z, Ong W J, Li N. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride[J]. J. Mater. Chem. A, 2018,6(44):21941-21948. doi: 10.1039/C8TA06497K

    36. [36]

      Mapasha R E, Ukpong A M, Chetty N. Ab initiostudies of hydrogen adatoms on bilayer graphene[J]. Phys. Rev. B, 2012,85(20)205402. doi: 10.1103/PhysRevB.85.205402

    37. [37]

      Hua X T, Ma X G, Hu J S, He H, Xu G W, Huang C Y, Chen X B. Controlling electronic properties of MoS2/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen[J]. Phys. Chem. Chem. Phys., 2018,20(3):1974-1983. doi: 10.1039/C7CP07303H

    38. [38]

      Ghosh B, Nahas S, Bhowmick S, Agarwal A. Electric field induced gap modification in ultrathin blue phosphorus[J]. Phys. Rev. B, 2015,91(11)115433. doi: 10.1103/PhysRevB.91.115433

    39. [39]

      Zheng H L, Yang H, Wang H X, Du X B, Yan Yu. Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study[J]. J. Magn. Magn. Mater., 2016,408:121-126. doi: 10.1016/j.jmmm.2016.02.014

    40. [40]

      Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron- hole puddle, interfacial charge transfer, and enhanced visible light response[J]. J. Am. Chem. Soc., 2012,134(9):4393-4397. doi: 10.1021/ja211637p

    41. [41]

      Cai Y Q, Zhang G, Zhang Y W. Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Hetero-structures[J]. J. Phys. Chem. C, 2015,119(24):13929-13936. doi: 10.1021/acs.jpcc.5b02634

    42. [42]

      Bardeen J. Surface states and rectification at a Metal Semi-Conductor contact[J]. Phys. Rev., 1947,71(10):717-727. doi: 10.1103/PhysRev.71.717

    43. [43]

      Hu J S, Duan W Y, He H, Lv H, Huang C Y, Ma X G. A promising strategy to tune the Schottky barrier of a MoS2(1-x)Se2x/graphene heterostructure by asymmetric Se doping[J]. J. Mater. Chem. C, 2019,7(25):7798-7805. doi: 10.1039/C9TC01873E

  • 加载中
    1. [1]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    5. [5]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    6. [6]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    7. [7]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    8. [8]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    9. [9]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    10. [10]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    11. [11]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    12. [12]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    13. [13]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    14. [14]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    15. [15]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    16. [16]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    19. [19]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    20. [20]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

Metrics
  • PDF Downloads(0)
  • Abstract views(314)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return