Citation: Bing-Lian GUO, Ji LI, Meng-Di LÜ, Xu-Ling XUE, Hong-Ke LIU. Synthesis and anticancer mechanism of ferroptosis of binuclear Os(Ⅱ)-arene complex[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1887-1897. doi: 10.11862/CJIC.2023.160 shu

Synthesis and anticancer mechanism of ferroptosis of binuclear Os(Ⅱ)-arene complex

Figures(10)

  • Here, we describe [Os(η6-bip)(1, 3-bib)Cl]2Cl2 (bib-Os) (η6-bip=η6-biphenyl, 1, 3-bib=1, 3-di(1H-imidazol-1-yl) benzene), a binuclear Os(Ⅱ) complex, which was characterized by 1H NMR and ESI-MS. The results showed that complex bib-Os had good lipophilicity (lg Po/w=1.52) and was easy to accumulate in cells. Complex bib-Os showed high antiproliferative activity against human ovarian A2780 cancer cells (IC50=4.2 μmol·L-1), producing a large number of reactive oxygen species (ROS) and inducing mitochondrial morphological damage and membrane potential decline. Lipid peroxide (LPO) accumulation, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inhibition further verified bib-Os-induced cell death through the ferroptosis pathway.
  • 加载中
    1. [1]

      Lian X Y, Zhang H, Liu Q, Lu X, Zhou P, He S Q, Tang R X, Cui J. Ovarian cancer-excreted exosomal miR-199a-5p suppresses tumor metastasis by targeting hypoxia-inducible factor-2α in hypoxia microenvironment[J]. Cancer Commun., 2020,40(8):380-385. doi: 10.1002/cac2.12034

    2. [2]

      Viscarra T, Buchegger K, Jofre I, Riquelme I, Zanella L, Abanto M, Parker A C, Piccolo S R, Roa J C, Ili C, Brebi P. Functional and transcriptomic characterization of carboplatin-resistant A2780 ovarian cancer cell line[J]. Biol. Res., 2019,5213. doi: 10.1186/s40659-019-0220-0

    3. [3]

      TAO Q, WU J, GE C, WANG M M, LÜ M D, XUE X L, LIU H K. Synthesis, characterization, fluorescence and interactions with DNA/BSA properties of ruthenium ferulate complexes[J]. Chinese J. Inorg. Chem., 2020,36(10):1853-1864.  

    4. [4]

      Štarha P. Multinuclear biologically active Ru, Rh, Os and Ir arene complexes[J]. Coord. Chem. Rev., 2020,431213690.

    5. [5]

      Liu H K, Berners-Price S J, Wang F, Parkinson J A, Xu J, Bella J, Sadler P J. Diversity in guanine-selective DNA binding modes for an organometallic ruthenium arene complex[J]. Angew. Chem. Int. Ed., 2006,45(48):8153-8156. doi: 10.1002/anie.200602873

    6. [6]

      Yang Q Y, Ma R, Gu Y Q, Xu X F, Chen Z F, Liang H. Arene-ruthenium(Ⅱ)/osmium(Ⅱ) complexes potentiate the anticancer efficacy of metformin via glucose metabolism reprogramming[J]. Angew. Chem. Int. Ed., 2022,61(38)e202208570. doi: 10.1002/anie.202208570

    7. [7]

      Needham R J, Sanchez-Cano C, Zhang X, Romero-Canelon I, Habtemariam A, Cooper M S, Meszaros L, Clarkson G J, Blower P J, Sadler P J. In-cell activation of organo-osmium(Ⅱ) anticancer complexes[J]. Angew. Chem. Int. Ed., 2017,56(4):1017-1020. doi: 10.1002/anie.201610290

    8. [8]

      Xue X, Fu Y, He L, Salassa L, He L F, Hao Y Y, Koh M J, Soulié C, Needham R J, Habtemariam A, Garino C, Lomachenko K A, Su Z, Qian Y, Paterson M J, Mao Z W, Liu H K, Sadler P J. Photoactivated osmium arene anticancer complexes[J]. Inorg. Chem., 2021,60(23):17450-17461. doi: 10.1021/acs.inorgchem.1c00241

    9. [9]

      Wang M F, Deng Y A, Li Q F, Tang S J, Yang R, Zhao R Y, Liu F D, Ren X, Zhang D, Gao F. Dinuclear osmium complexes as mitochondrion-targeting antitumor photothermal agents in vivo[J]. Chem. Commun., 2022,58:12676-12679. doi: 10.1039/D2CC05230J

    10. [10]

      Wang H T, Ju J, Wang S C, Zhang Y H, Liu C Y, Wang T, Yu X, Wang F, Cheng X R, Wang K, Chen Z Y. Insights into ferroptosis, a novel target for the therapy of cancer[J]. Front. Oncol., 2022,12(8)812534.

    11. [11]

      Hamai A, Gong C, Mehrpour M. The role of iron in cancer progression[J]. Front. Oncol., 2022,121026420. doi: 10.3389/fonc.2022.1026420

    12. [12]

      Tang D L, Chen X, Kang R, Kroemer G. Ferroptosis: Molecular mechanisms and health implications[J]. Cell Res., 2021,31(2):107-125. doi: 10.1038/s41422-020-00441-1

    13. [13]

      Zheng J, Conrad M. The metabolic underpinnings of ferroptosis[J]. Cell Metab., 2020,32(6):920-937. doi: 10.1016/j.cmet.2020.10.011

    14. [14]

      Zhang D G, Man D, Lu J H, Jiang Y F, Ding B, Su R, Tong R L, Chen J R, Yang B, Zheng S S, Chen D Y, Wu J. Mitochondrial TSPO promotes hepatocellular carcinoma progression through ferroptosis inhibition and immune evasion[J]. Adv. Sci., 2023,10(15)2206669. doi: 10.1002/advs.202206669

    15. [15]

      Yuan H, Han Z, Chen Y C, Qi F, Fang H, Guo Z J, Zhang S R, He W J. Ferroptosis photoinduced by new cyclometalated iridium(Ⅲ) complexes and its synergism with apoptosis in tumor cell inhibition[J]. Angew. Chem. Int. Ed., 2021,60(15):8174-8181. doi: 10.1002/anie.202014959

    16. [16]

      Zhao X Y, Zhang J Y, Zhang W, Guo Z J, Wei W, Wang X X, Zhao J. A chiral fluorescent Ir(Ⅲ) complex that targets the GPX4 and ErbB pathways to induce cellular ferroptosis[J]. Chem. Sci., 2023,14(5):1114-1122. doi: 10.1039/D2SC06171F

    17. [17]

      Du S T, Zeng F R, Deng G T. Tumor neutrophils ferroptosis: A targetable immunosuppressive mechanism for cancer immunotherapy[J]. Signal Transduct. Target. Ther., 2023,8(1)77. doi: 10.1038/s41392-023-01357-z

    18. [18]

      Wu Q, Liu L Y, Li S, Wang F X, Li J, Qian Y, Su Z, Mao Z W, Sadler P J, Liu H K. Rigid dinuclear ruthenium-arene complexes showing strong DNA interactions[J]. J. Inorg. Biochem., 2018,189:30-39. doi: 10.1016/j.jinorgbio.2018.08.013

    19. [19]

      Posadino A, Biosa G, Zayed H, Abou-Saleh H, Cossu A, Nasrallah G, Giordo R, Pagnozzi D, Porcu M, Pretti L, Pintus G. Protective effect of cyclically pressurized solid-liquid extraction polyphenols from Cagnulari grape pomace on oxidative endothelial cell death[J]. Molecules, 2018,23(9)2105. doi: 10.3390/molecules23092105

    20. [20]

      Wardecki D, Dołowy M, Bober-Majnusz K. Assessment of lipophilicity parameters of antimicrobial and immunosuppressive compounds[J]. Molecules, 2023,23(6)2820.

    21. [21]

      Li Z, Zou J H, Chen X Y. In response to precision medicine: Current subcellular targeting strategies for cancer therapy[J]. Adv. Mater., 2022,35e2209529.

    22. [22]

      Tong X H, Tang R, Xiao M M, Xu J, Wang W, Zhang B, Liu J, Yu X J, Shi S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research[J]. J. Hematol. Oncol., 2022,15174. doi: 10.1186/s13045-022-01392-3

    23. [23]

      Wang K, Zhu C C, He Y F, Zhang Z Q, Zhou W, Muhammad N, Guo Y, Wang X Y, Guo Z J. Restraining cancer cells by dual metabolic inhibition with a mitochondrion-targeted platinum(Ⅱ) complex[J]. Angew. Chem. Int. Ed., 2019,58(14):4638-4643. doi: 10.1002/anie.201900387

    24. [24]

      LI S J, QIAN X T, HUANG Y L, XUE X L, QIAN Y, SU Z, LIU H K. Click-chemistry synthesis and antitumor properties of cyclometalated iridium(Ⅲ) complex based on oleanolic acid[J]. Chinese J. Inorg. Chem., 2023,39(2):1131-1136.  

    25. [25]

      Pierroz V, Joshi T, Leonidova A, Mari C, Schur J, Ott I, Spiccia L, Ferrari S, Gasser G. Molecular and cellular characterization of the biological effects of ruthenium(Ⅱ) complexes incorporating 2-pyridyl-2-pyrimidine-4-carboxylic acid[J]. J. Am. Chem. Soc., 2012,134(50):20376-20387. doi: 10.1021/ja307288s

    26. [26]

      Xu L, Zhang P P, Fang X Q, Liu Y, Wang J Q, Zhou H Z, Chen S T, Chao H. A ruthenium(Ⅱ) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production[J]. J. Inorg. Biochem., 2018,191:126-134.

    27. [27]

      Wang F X, Chen M H, Hu X Y, Ye R R, Tan C P, Ji L N, Mao Z W. Ester-modified cyclometalated iridium(Ⅲ) complexes as mitochondria-targeting anticancer agents[J]. Sci. Rep., 2016,638954. doi: 10.1038/srep38954

    28. [28]

      Guan R L, Chen Y, Zeng L L, Rees T W, Jin C Z, Huang J J, Chen Z S, Ji L N, Chao H. Oncosis-inducing cyclometalated iridium(Ⅲ) complexes[J]. Chem. Sci., 2018,9(23):5183-5190. doi: 10.1039/C8SC01142G

    29. [29]

      Luk K, Nguyen J, Paul J, Benson B, Lamarre Y Y, Gupta K. Mast cell activation in sickle mice stimulates endothelial dysfunction[J]. Blood, 2014,124(21)453. doi: 10.1182/blood.V124.21.453.453

    30. [30]

      Zhang J J, Gao B Q, Ye B L, Sun Z Q, Qian Z F, Yu L S, Bi Y L, Ma L, Ding Y, Du Y, Wang W L, Mao Z W. Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases[J]. Adv. Mater., 2023,35(11)2208571. doi: 10.1002/adma.202208571

    31. [31]

      Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P, Buch S. HIV-1 Tat-mediated microglial ferroptosis involves the miR-204-ACSL4 signaling axis[J]. Redox Biol., 2023,62102689. doi: 10.1016/j.redox.2023.102689

    32. [32]

      Chen X, Kang R, Kroemer G, Tang D L. Broadening horizons: The role of ferroptosis in cancer[J]. Nat. Rev. Clin. Oncol., 2021,18:280-296. doi: 10.1038/s41571-020-00462-0

    33. [33]

      Zhu Y, Gong P, Wang J, Cheng J J, Wang W Y, Cai H L, Ao R J, Huang H W, Yu M L, Lin L S, Chen X Y. Amplification of lipid peroxidation by regulating cell membrane unsaturation to enhance chemodynamic therapy[J]. Angew. Chem. Int. Ed., 2023,62(12)e202218407. doi: 10.1002/anie.202218407

    34. [34]

      Liu Y, Yan J H, Sun Z H, Huang Y, Li X W, Jin Y R. Hierarchical flower-like manganese oxide/polystyrene with enhanced oxidase-mimicking performance for sensitive colorimetric detection of glutathione[J]. Microchim. Acta, 2022,18963. doi: 10.1007/s00604-021-05136-x

    35. [35]

      Lee S, Li J, Zhou X, Yin J, Yoon J. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes[J]. Coord. Chem. Rev., 2018,366:29-68. doi: 10.1016/j.ccr.2018.03.021

    36. [36]

      Stockwell B R, Angeli J P F, Bayir H, Bush A I, Conrad M, Dixon S J, Fulda S, Gascon S, Hatzios S K, Kagan V E, Noel K, Jiang X, Linkermann A, Murphy M E, Overholtzer M, Oyagi A, Pagnussat G C, Park J, Ran Q, Rosenfeld C S, Salnikow K, Tang D, Torti F M, Torti S V, Toyokuni S, Woerpel K A, Zhang D D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017,171(2):273-285. doi: 10.1016/j.cell.2017.09.021

    37. [37]

      Dixon S J, Lemberg K M, Lamprecht M R, Skouta R, Zaitsev E M, Gleason C E, Patel D N, Bauer A J, Cantley A M, Yang W S, Morrison B, Stockwell B R. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042

    38. [38]

      Forcina G C, Dixon S J. GPX4 at the crossroads of lipid homeostasis and ferroptosis[J]. Proteomics, 2019,19(18)1800311. doi: 10.1002/pmic.201800311

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(1)
  • Abstract views(432)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return