Citation: Ding FAN, Li-Ming WANG, Feng-Qiang LIU, Li-Hui XU, Hong PAN. Preparation and photocatalytic properties of ZnFe2O4/Ag/TiO2 composite[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1941-1949. doi: 10.11862/CJIC.2023.159 shu

Preparation and photocatalytic properties of ZnFe2O4/Ag/TiO2 composite

  • Corresponding author: Li-Ming WANG, wlm@sues.edu.cn
  • Received Date: 9 March 2023
    Revised Date: 12 September 2023

Figures(9)

  • ZnCaFe2O4/Ag/TiO2 composites were prepared with silver nitrate, tetrabutyl titanate, anhydrous zinc chloride, and ferric chloride hexahydrate as raw materials by sol-gel and solvothermal methods. The samples were characterized and tested by scanning electron microscope, energy spectrum analyzer, X-ray powder diffractometer, X-ray photoelectron spectrometer, vibrating sample magnetometer, ultraviolet visible spectrophotometer. The results showed that ZnCaFe2O4/Ag/TiO2-10 had the best photocatalytic effect, and the degradation rate of dye can reach more than 90% under both ultraviolet and visible light. It had excellent ultraviolet/visible light photocatalytic activity. And after being compounded with ZnCaFe2O4, ZnCaFe2O4/Ag/TiO2 had unique magnetism, which can be recycled under the action of external magnetic field, which makes it possible in practical application. Through magnetic separation technology, the photocatalysis performance of ZnCaFe2O4/Ag/TiO2-10 was still excellent after recycling for five times, which showed excellent magnetism and high photocatalytic cycle stability.
  • 加载中
    1. [1]

      Zeghioud H, Khellaf N, Amrane A, Djelal H, Bouhelassa M, Assadi A A, Rtimi S. Combining photocatalytic process and biological treatment for reactive green 12 degradation: Optimization, mineralization, and phytotoxicity with seed germination[J]. Environ. Sci. Pollut. Res. Int., 2021,28(10):12490-12499. doi: 10.1007/s11356-020-11282-1

    2. [2]

      Mashkoor F, Nasar A. Magsorbents: Potential candidates in wastewater treatment technology—A review on the removal of methylene blue dye[J]. J. Magn. Magn. Mater., 2020,500166408. doi: 10.1016/j.jmmm.2020.166408

    3. [3]

      Natarajan S, Bajaj H C, Tayade R J. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process[J]. J. Environ. Sci., 2018,65:201-222. doi: 10.1016/j.jes.2017.03.011

    4. [4]

      Ida S, Yamada K, Matsuka M, Hagiwara H, Ishihara T. Photoelectrochemical hydrogen production from water using p-type and n-type oxide semiconductor electrodes[J]. Electrochim. Acta, 2012,82:397-401. doi: 10.1016/j.electacta.2012.03.174

    5. [5]

      Li X J, Jin B, Huang J W, Zhang Q C, Peng R F, Chu S J. Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light[J]. Solid State Sci., 2018,80:6-14. doi: 10.1016/j.solidstatesciences.2018.03.016

    6. [6]

      Wang L, Liu Z, Han J, Li R, Huang M. Stepwise synthesis of Au@CdS-CdS nanoflowers and their enhanced photocatalytic properties[J]. Nanoscale Res. Lett., 2019,14(1):1-9. doi: 10.1186/s11671-018-2843-4

    7. [7]

      Nundy S, Ghosh A, Mallick T K. Hydrophilic and superhydrophilic self-cleaning coatings by morphologically varying ZnO microstructures for photovoltaic and glazing applications[J]. ACS Omega, 2020,5(2):1033-1039. doi: 10.1021/acsomega.9b02758

    8. [8]

      Chen S J, Di Y J, Li H, Wang M Y, Jia B, Xu R, Liu X Y. Efficient photocatalytic dye degradation by flowerlike MoS2/SrFe12O19 heterojunction under visible light[J]. Appl. Surf. Sci., 2021,559149855. doi: 10.1016/j.apsusc.2021.149855

    9. [9]

      Zhang D. Photocatalytic applications of Au-deposited on TiO2 nanocomposite catalyst in dye degradation via photoreduction[J]. Russ. J. Phys. Chem. A, 2012,86(3):498-503. doi: 10.1134/S0036024412030363

    10. [10]

      Nemiwal M, Zhang T C, Kumar D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity[J]. Sci. Total Environ., 2021,767144896. doi: 10.1016/j.scitotenv.2020.144896

    11. [11]

      Sun M J, Han X L, Chen S G. Synthesis and photocatalytic activity of nano-cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation[J]. Mat. Sci. Semicon. Proc., 2019,91:367-376. doi: 10.1016/j.mssp.2018.12.005

    12. [12]

      Liu N, Zhu Q, Zhang N, Zhang C, Kawazoe N, Chen G P, Negishi N, Yang Y N. Superior disinfection effect of Escherichia coli by hydrothermal synthesized TiO2-based composite photocatalyst under LED irradiation: Influence of environmental factors and disinfection mechanism[J]. Environ. Pollut., 2019,247:847-856. doi: 10.1016/j.envpol.2019.01.082

    13. [13]

      Krylov I B, Lopat'eva E R, Subbotina I R, Nikishin G I, Yu B, Terent'ev A O. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen[J]. Chinese J Catal., 2021,42(10):1700-1711. doi: 10.1016/S1872-2067(21)63831-7

    14. [14]

      Ji L J, Zhang Y H, Miao S Y, Gong M D, Liu X. In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light[J]. Carbon, 2017,125:544-550. doi: 10.1016/j.carbon.2017.09.094

    15. [15]

      LI P, ZHANG X X, SI Y, LIANG T T, LIU H, QIU L F, DUAN S Q, DUO S W, CHEN Z. Constructing and photocatalytic performance of g-C3N4/Ag/TiO2 composites[J]. Chinese J. Inorg. Chem., 2020,36(3):566-574.  

    16. [16]

      Karimi-Maleh H, Kumar B G, Rajendran S, Qin J, Vadivel S, Durgalakshmi D, Gracia F, Soto-Moscoso M, Orooji Y, Karimi F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration[J]. J. Mol. Liq., 2020,314113588. doi: 10.1016/j.molliq.2020.113588

    17. [17]

      Augustine R, Kalarikkal N, Thomas S. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study[J]. Appl. Nanosci., 2014,4:809-818. doi: 10.1007/s13204-013-0260-7

    18. [18]

      Brown P K, Qureshi A T, Moll A N, Hayes D J, Monroe W T. Silver nanoscale antisense drug delivery system for photoactivated gene silencing[J]. ACS Nano, 2013,7(4):2948-2959. doi: 10.1021/nn304868y

    19. [19]

      Choi H, Ko S J, Choi Y, Joo P, Kim T, Lee B R, Jung J W, Choi H J, Cha M, Jeong J R, Hwang I W, Song M H, Kim B S, Kim J Y. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices[J]. Nat. Photonics., 2013,7(9):732-738. doi: 10.1038/nphoton.2013.181

    20. [20]

      Song Y L, Qi J Y, Tian J Y, Gao S S, Cui F Y. Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation[J]. Chem. Eng. J., 2018,341:547-555. doi: 10.1016/j.cej.2018.02.063

    21. [21]

      Chakhtouna H, Benzeid H, Zari N, Qaiss A E K, Bouhfid R. Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors[J]. Environ. Sci. Pollut. Res. Int., 2021,28(33):1-29.

    22. [22]

      Sun Y W, Lei J S, Wang Y Z, Tang Q, Kang C L. Fabrication of a magnetic ternary ZnFe2O4/TiO2/RGO Z-scheme system with efficient photocatalytic activity and easy recyclability[J]. RSC Adv., 2020,10(29):17293-17301. doi: 10.1039/D0RA01880E

    23. [23]

      Cai C, Zhang Z Y, Liu J, Shan N, Zhang H, Dionysiou D D. Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of orange Ⅱ in water[J]. Appl. Catal. B-Environ., 2016,182:456-468. doi: 10.1016/j.apcatb.2015.09.056

    24. [24]

      Guo X, Zhu H J, Li Q. Visible-light-driven photocatalytic properties of ZnO/ZnFe2O4 core/shell nanocable arrays[J]. Appl. Catal. B-Environ., 2014,160:408-414.

    25. [25]

      Liu T Y, Wang C X, Wang W, Yang G J, Lu Z Y, Xu P, Sun X N, Zhang J T. The enhanced properties in photocatalytic wastewater treatment: Sulfanilamide (SAM) photodegradation and Cr6+ photoreduction on magnetic Ag/ZnFe2O4 nanoarchitectures[J]. J. Alloy. Compd., 2021,867159085. doi: 10.1016/j.jallcom.2021.159085

    26. [26]

      Yang G X, Yin H B, Liu W H, Yang Y P, Zou Q, Luo L L, Li H P, Huo Y N, Li H X. Synergistic Ag/TiO2-N photocatalytic system and its enhanced antibacterial activity towards Acinetobacter baumannii[J]. Appl. Catal. B-Environ., 2018,224:175-182. doi: 10.1016/j.apcatb.2017.10.052

    27. [27]

      Jbeli A, Hamden Z, Bouattour S, Ferraria A M, Conceição D S, Ferreira L F V, Chehimi M M, do Rego A M B, Rei Vilar M, Boufi S. Chitosan-Ag-TiO2 films: An effective photocatalyst under visible light[J]. Carbohydr. Polym., 2018,199:31-40. doi: 10.1016/j.carbpol.2018.06.122

    28. [28]

      Mady A H, Baynosa M L, Tuma D, Shim J J. Facile microwave-assisted green synthesis of Ag-ZnFe2O4@ rGO nanocomposites for efficient removal of organic dyes under UV-and visible-light irradiation[J]. Appl. Catal. B-Environ., 2017,203:416-427. doi: 10.1016/j.apcatb.2016.10.033

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(8)
  • Abstract views(406)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return