Citation: Xue-Ying LU, Mei-Li ZHANG, Yi-Xia REN, Ji-Jiang WANG, Xiao-Gang YANG. Adsorption, photocatalytic degradation, and their mechanisms of methylene blue on three-dimensional Cu-MOF[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1991-2002. doi: 10.11862/CJIC.2023.158 shu

Adsorption, photocatalytic degradation, and their mechanisms of methylene blue on three-dimensional Cu-MOF

Figures(10)

  • Herein, we report the synthesis, structure, adsorption and photocatalytic degradation properties of a novel metal-organic framework [Cu3(ppda)3(tib)2(H2O)4]·6H2O (Cu-MOF) by the selection of the flexible 1,4-phenylenedi-acetic acid (H2ppda) and the rigid 1,3,5-tris(1-imidazolyl) benzene (tib). In Cu-MOF, ppda2- and tib ligands alternately link Cu ions to form 2D polymeric layers, the layer and layer interpenetrate each other by trans-ppda2- to form a stable 3D structure. Cu-MOF has excellent thermal stability and semiconductor properties, so it can be used as a catalyst. Cu-MOF had the best catalytic effect on methylene blue (MB), with a catalytic efficiency of up to 97% and the highest reaction rate constant of 0.019 7 min-1. The main photocatalytic degradation mechanism is the separation of the photogenerated electron and hole pair of the catalyst under the light excitation, and the redox reaction occurs to produce the active species to degrade the dye and eventually decompose into carbon dioxide and water. Cu - MOF exhibited high adsorption capacity after adding NaCl (200 g·L-1) to MB solution (87.23 mg·g-1). The adsorption process is a spontaneous monolayer chemisorption process illustrated by the pseudo-second-order kinetic and Langmuir isotherm models and thermodynamic studies.
  • 加载中
    1. [1]

      Zhou H C, Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chem. Soc. Rev., 2014,43(16):5415-5418. doi: 10.1039/C4CS90059F

    2. [2]

      Jiao L, Seow J Y R, Skinner W S, Wang Z Y U, Jiang H L. Metalorganic frameworks: Structures and functional applications[J]. Mater. Today, 2019,27:43-68. doi: 10.1016/j.mattod.2018.10.038

    3. [3]

      Corma A, García H, Xamena F X L I. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem. Rev., 2010,110(8):4606-4655. doi: 10.1021/cr9003924

    4. [4]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    5. [5]

      Lu K D, Aung T, Guo N N, Weichselbaum R, Lin W B. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications[J]. Adv. Mater., 2018,30(37)e1707634. doi: 10.1002/adma.201707634

    6. [6]

      Ramaswamy P, Wong N E, Shimizu G K H. MOFs as proton conductors-challenges and opportunities[J]. Chem. Soc. Rev., 2014,43(16):5913-5932. doi: 10.1039/C4CS00093E

    7. [7]

      Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metalorganic framework materials as chemical sensors[J]. Chem. Rev., 2012,112(2):1105-1125. doi: 10.1021/cr200324t

    8. [8]

      Li B, Wen H M, Cui Y J, Zhou W, Qian G D, Chen B L. Emerging multifunctional metal-organic framework materials[J]. Adv. Mater., 2016,28(40):8819-8860. doi: 10.1002/adma.201601133

    9. [9]

      Yang X G, Zhang J R, Tian X K, Qin J H, Zhang X Y, Ma L F. Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ ions[J]. Angew. Chem. Int. Ed., 2022,62(7)e202216699.

    10. [10]

      Pournara A D, Tarlas G D, Papaefstathiou G S, Manos M J. Chemically modified electrodes with MOFs for the determination of inorganic and organic analytes via voltammetric techniques: a critical review[J]. Inorg. Chem. Front., 2019,6(12):3440-3455. doi: 10.1039/C9QI00965E

    11. [11]

      Beydaghdari M, Saboor F H, Babapoor A, Karve V V, Asgari M. Recent advances in MOF-based adsorbents for dye removal from the aquatic environment[J]. Energies, 2022,15(6)2023. doi: 10.3390/en15062023

    12. [12]

      Phan D N, Rebia R A, Saito Y, Kharaghani D, Khatri M, Tanaka T, Lee H, Kim I S. Zinc oxide nanoparticles attached to polyacrylonitrile nanofibers with hinokitiol as gluing agent for synergistic antibacterial activities and effective dye removal[J]. J. Ind. Eng. Chem., 2020,85:258-268. doi: 10.1016/j.jiec.2020.02.008

    13. [13]

      Zhao J J, Xu L Q, Su Y Z, Yu H W, Liu H, Qian S P, Zheng W, Zhao Y Q. Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption[J]. J. Environ. Sci., 2021,101:177-188. doi: 10.1016/j.jes.2020.08.021

    14. [14]

      Chiong J A, Zhu J, Bailey J B, Kalaj M, Subramanian R H, Xu W Q, Cohen S M, Tezcan F A. An exceptionally stable metal-organic framework constructed from chelate-based metal-organic polyhedra[J]. J. Am. Chem. Soc., 2020,142(15):6907-6912. doi: 10.1021/jacs.0c01626

    15. [15]

      Dawood S, Sen T K, Phan C. Synthesis and characterization of novelactivated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption[J]. Water Air Soil Pollut., 2013,225(1)1818.

    16. [16]

      Jadhav S A, Garud H B, Patil A H, Patil G D, Patil C R, Dongale T D, Patil P S. Recent advancements in silica nanoparticles based technologies for removal of dyes from water[J]. Colloid Interface Sci. Commun., 2019,30(10)100181.

    17. [17]

      Parmar B, Bisht K K, Rajput G, Suresh E. Recent advances in metal-organic frameworks as adsorbent materials for hazardous dye molecules[J]. Dalton Trans., 2021,50(9):3083-3108. doi: 10.1039/D0DT03824E

    18. [18]

      Yu D Y, Li L B, Wu M H, Crittenden J C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework[J]. Appl. Catal. B: Environ., 2019,251:66-75. doi: 10.1016/j.apcatb.2019.03.050

    19. [19]

      Li Y, Pang J D, Bu X H. Multi-functional metal-organic frameworks for detection and removal of water pollution[J]. Chem. Commun., 2022,58(57):7890-7908. doi: 10.1039/D2CC02738K

    20. [20]

      Hou X T, Wang J C, Mousavi B, Klomkliang N, Chaemchuen S. Strategies for induced defects in metal-organic frameworks for enhancing adsorption and catalytic performance[J]. Dalton Trans., 2022,51(21):8133-8159. doi: 10.1039/D2DT01030E

    21. [21]

      Ibrahim A O, Adegoke K A, Adegoke R O, AbdulWahab Y A, Oyelami V B, Adesina M O. Adsorptive removal of different pollutants using metal-organic framework adsorbents[J]. J. Mol. Liq., 2021,333115593. doi: 10.1016/j.molliq.2021.115593

    22. [22]

      Mu Y, Wang D, Meng X D, Pan J, Han S D, Xue Z Z. Construction of iodoargentates with diverse architectures: Template syntheses, structures, and photocatalytic properties[J]. Cryst. Growth Des., 2020,20(2):1130-1138. doi: 10.1021/acs.cgd.9b01448

    23. [23]

      Li H X, Yang Z X, Lu S, Su L Y, Wang C H, Huang J G, Zhou J, Tang J H, Huang M Z. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism[J]. Chemosphere, 2021,273129643. doi: 10.1016/j.chemosphere.2021.129643

    24. [24]

      Wang S J, Alavi M A, Karizi F Z, Tehrani A A, Yan X W, Morsali A, Hu M L. A pillar-layered metal-organic framework based on pinwheel trinuclear zinc-carboxylate clusters; synthesis and characterization[J]. Mater. Lett., 2021,287129261. doi: 10.1016/j.matlet.2020.129261

    25. [25]

      Jia X N, Li S J, Wang Y D, Wang T, Hou X H. Adsorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on a novel MIL-101(Cr)@GO composite[J]. J. Chem. Eng. Data, 2019,64(3):1265-1274. doi: 10.1021/acs.jced.8b01152

    26. [26]

      Karimi-Maleh H, Ayati A, Davoodi R, Tanhaei B, Karimi F, Malekmohammadi S, Orooji Y, Fu L, Sillanpää M. Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review[J]. J. Cleaner Prod., 2021,291(6)125880.  

    27. [27]

      Liu Z C, Tran K Q. A review on disposal and utilization of phytoremediation plants containing heavy metals[J]. Ecotox. Environ. Safe., 2021,226112821. doi: 10.1016/j.ecoenv.2021.112821

    28. [28]

      Wang S B, Guan B Y, Wang X, Lou X W D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2018,140(45):15145-15148. doi: 10.1021/jacs.8b07721

    29. [29]

      Fan C B, Zhang X, Li N N, Xu C G, Wu R X, Zhu B, Zhang G L, Bi S Y, Fan Y H. Zn-MOFs based luminescent sensors for selective and highly sensitive detection of Fe3+ and tetracycline antibiotic[J]. J. Pharm. Biomed. Anal., 2020,188(48)113444.

    30. [30]

      Xu X Y, Yan B. Eu (Ⅲ)-functionalized ZnO@MOF heterostructures: Integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles[J]. J. Mater. Chem. A, 2017,5(5):2215-2223. doi: 10.1039/C6TA10019H

    31. [31]

      Wu X Q, Huang D D, Wu Y P, Zhao J, Liu X, Dong W W, Li S, Li D S, Li J R. In situ synthesis of nano CuS-embedded MOF hierarchical structures and application in dye adsorption and hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2019,2(8):5698-5706. doi: 10.1021/acsaem.9b00840

    32. [32]

      Cui R F, Li R, Li Z, Wei M M, Wang X, Li X. A Tb-MOF anion, porous coordination framework constructed with oxalate ligand: Crystal structure, adsorption properties, and luminescence sensing[J]. Dyes Pigm., 2021,195109669. doi: 10.1016/j.dyepig.2021.109669

    33. [33]

      Balarak D, Azarpira H. Photocatalytic degradation of sulfamethoxazole in water: Investigation of the effect of operational parameters[J]. Int. J. Chem. Technol. Res., 2016,9:731-738.

    34. [34]

      Seo P W, Khan N A, Jhung S H. Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine[J]. Chem. Eng. J., 2017,315:92-100. doi: 10.1016/j.cej.2017.01.021

    35. [35]

      Vinothkumar K, Jyothi M S, Lavanya C, Sakar M, Valiyaveettil S, Balakrishna R G. Strongly co-ordinated MOF-PSF matrix for selective adsorption, separation and photodegradation of dyes[J]. Chem. Eng. J., 2022,428132561. doi: 10.1016/j.cej.2021.132561

    36. [36]

      Zaman F U, Xie B, Zhang J Y, Gong T Y, Cui K, Hou L R, Xu J L, Zhai Z R, Yuan C Z. MOFs derived hetero-ZnO/Fe2O3 nanoflowers with enhanced photocatalytic performance towards efficient degradation of organic dyes[J]. Nanomaterials, 2021,11(12)3239. doi: 10.3390/nano11123239

    37. [37]

      Zuo L Q, Zhang T F, Zhang Z K, Hou J X, Liu G J, Du J L, Li L X. A 3D binuclear salen-based multifunctional MOF: Degradation of MO dye and highly selective sensing of Fe3+[J]. Inorg. Chem. Commun., 2019,99:113-118. doi: 10.1016/j.inoche.2018.11.006

    38. [38]

      Ouyang J B, Chen J, Ma S Q, Xing X H, Zhou L M, Liu Z R, Zhang C T. Adsorption removal of sulfamethoxazole from water using UiO-66 and UiO-66-BC composites[J]. Particuology, 2022,62(3):71-78.

    39. [39]

      LIU F Q, WANG L M, FAN D, XU L H, PAN H. Preparation and photocatalytic properties of TiO2/Cu2O/Pt composite hollow microspheres[J]. Chinese J. Inorg. Chem., 2023,39(2):300-308.  

    40. [40]

      Peng Y, Mao Y G, Liu T. Synthesis of one-dimensional Bi2O3-B5O7I heterojunctions with high interface quality[J]. CrystEngComm, 2018,20(33):4771-4780. doi: 10.1039/C8CE00819A

    41. [41]

      Hou L R, Niu Y W, Yang F, Ge F Y, Yuan C Z. Facile solvothermal synthesis of hollow BiOBr submicrospheres with enhanced visible- light- responsive photocatalytic performance[J]. J. Anal. Methods Chem., 20203058621.

    42. [42]

      Wang C, Xiong C, He Y L, Yang C, Li X T, Zheng J Z, Wang S X. Facile preparation of magnetic Zr-MOF for adsorption of Pb (Ⅱ) and Cr(Ⅵ) from water: Adsorption characteristics and mechanisms[J]. Chem. Eng. J., 2021,415128923. doi: 10.1016/j.cej.2021.128923

    43. [43]

      Xiong W P, Zeng G M, Yang Z H, Zhou Y Y, Zhang C, Cheng M, Liu Y, Hu L, Wan J, Zhou C Y, Xu R, Li X. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi- walled carbon nanotube functionalized MIL- 53(Fe) as new adsorbent[J]. Sci. Total Environ., 2018,627:235-244. doi: 10.1016/j.scitotenv.2018.01.249

    44. [44]

      Zhang Y, Wang X, Wang Y, Li L, Xu N, Wang X L. Anderson-type polyoxometalate-based complexes constructed from a new 'V' -like bis- pyridine-bis amide ligand for selective adsorption of organic dyes and detection of Cr (Ⅵ) and Fe (Ⅲ) ions[J]. Inorg. Chem. Front., 2021,8(20):4458-4466. doi: 10.1039/D1QI00785H

    45. [45]

      Nie Y L, Hu C, Kong C P. Enhanced fluoride adsorption using Al(Ⅲ) modified calcium hydroxyapatite[J]. J. Hazard. Mater., 2012,233-234:194-199. doi: 10.1016/j.jhazmat.2012.07.020

    46. [46]

      Zhao X D, Liu D H, Huang H L. The stability and defluoridation performance of MOFs in fluoride solutions[J]. Microporous Mesoporous Mat., 2014,185:72-78. doi: 10.1016/j.micromeso.2013.11.002

    47. [47]

      Wang H, Yuan X Z, Wu Y. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis[J]. Appl. Catal. B: Environ., 2016,186:19-29. doi: 10.1016/j.apcatb.2015.12.041

    48. [48]

      Kumar G, Masram D T. Sustainable synthesis of MOF-5@GO nanocomposites for efficient removal of rhodamine b from water[J]. ACS Omega, 2021,6(14):9587-9599. doi: 10.1021/acsomega.1c00143

    49. [49]

      Ahmadi S, Banach A, Mostafapour F K, Balarak D. Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: Adsorption isotherm study[J]. Desalin. Water Treat., 2017,89:297-303.

    50. [50]

      HAN X, WANG Y L, GENG F J, XI G Q. Adsorption of rhodamine B by benzimidazole-based metal-organic framework/graphene oxide composites[J]. Chinese J. Inorg. Chem., 2023,39(6):1159-1168.  

    51. [51]

      Malesic-Eleftheriadou N, Evgenidou E, Lazaridou M, Bikiaris D N, Yang X, Kyzas G Z, Lambropoulou D A. Simultaneous removal of anti-inflammatory pharmaceutical compounds from an aqueous mixture with adsorption onto chitosan zwitterionic derivative[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2021,619126498. doi: 10.1016/j.colsurfa.2021.126498

    52. [52]

      Minisy I M, Ayad M M, Salahuddin N A. Chitosan/polyaniline hybrid for the removal of cationic and anionic dyes from aqueous solutions[J]. J. Appl. Polym., 2018,136(6)47056.

    53. [53]

      Karimi M A, Masrouri H, Mirbagheri M A, Andishgar S, Pourshamsi T. Synthesis of a new magnetic metal-organic framework nanocomposite and its application in methylene blue removal from aqueous solution[J]. J. Chin. Chem. Soc., 2018,65(10):1229-1238. doi: 10.1002/jccs.201800061

    54. [54]

      Hamedi A, Zarandi M B, Nateghi M R. Highly efficient removal of dye pollutants by MIL-101(Fe) metal-organic framework loaded magnetic particles mediated by poly L- Dopa[J]. J. Environ. Chem. Eng., 2019,7102882. doi: 10.1016/j.jece.2019.102882

    55. [55]

      Si J J, Zhang S, Liu X M, Fang K J. Flower-shaped Ni/Co MOF with the highest adsorption capacity for reactive dyes[J]. Langmuir, 2022,38:6004-6012. doi: 10.1021/acs.langmuir.2c00184

    56. [56]

      Liu Y, Xu H. Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules[J]. Biochem. Eng. J., 2007,35:174-182. doi: 10.1016/j.bej.2007.01.020

    57. [57]

      Bibi R, Wei L F, Shen Q H, Tian W, Oderinde O, Li N X, Zhou J C. Effect of amino functionality on the uptake of cationic dye by titanium-based metal organic frameworks[J]. J. Chem. Eng. Data, 2017,62(5):1615-1622. doi: 10.1021/acs.jced.6b01012

    58. [58]

      Zeng S Y, Duan S X, Tang R F, Li L, Liu C H, Sun D Z. Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption[J]. Chem. Eng. J., 2014,258:218-228. doi: 10.1016/j.cej.2014.07.093

    59. [59]

      Jin J H, Yang Z H, Xiong W P. Cu and Co nanoparticles co-doped MIL- 101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions[J]. Sci. Total Environ., 2019,650:408-418. doi: 10.1016/j.scitotenv.2018.08.434

    60. [60]

      Chen J, Ouyang J B, Chen W Q, Zheng Z P, Yang Z, Liu Z R, Zhou L M. Fabrication and adsorption mechanism of chitosan/Zr- MOF (UiO- 66) composite foams for efficient removal of ketoprofen from aqueous solution[J]. Chem. Eng. J., 2022,431134045. doi: 10.1016/j.cej.2021.134045

    61. [61]

      Huang J M, Huang D, Zeng F B, Ma L, Wang Z B. Photocatalytic MOF fibrous membranes for cyclic adsorption and degradation of dyes[J]. J. Mater. Sci., 2021,56(4):3127-3139. doi: 10.1007/s10853-020-05473-x

    62. [62]

      Sheth Y, Dharaskar S, Khalid M, Sonawane S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review[J]. Sustain. Energy Technol. Assess., 2021,43100951.

    63. [63]

      Mahreni M, Ramadhan R R, Pramadhana M F. Synthesis of metal organic framework (MOF) based Ca-Alginate for adsorption of malachite green dye[J]. Polym. Bull., 2022,79:11301-11315. doi: 10.1007/s00289-022-04086-5

  • 加载中
    1. [1]

      Ruiyan CHENYanping HEJian ZHANG . Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177

    2. [2]

      Shanqing YANGLulu WANGQiang ZHANGJiajia LIYilong LITongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154

    3. [3]

      Zhangyong LIULihui XUYue YANGLiming WANGHong PANXinzhe HUANGXueqiang FUYingxiu ZHANGMeiran DOUMeng WANGYi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345

    4. [4]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    5. [5]

      Hongzhe GUOSen WANGLu YANGFucheng LIUJiongpeng ZHAOZhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179

    6. [6]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    7. [7]

      Xinnan XIEBoyu ZHANGJianxun YANGYi ZHONGYounis OsamaJianxiao YANGXinchun YANG . Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025

    8. [8]

      Huaihao CHENLingwen ZHANGYukun CHENJianjun ZHANG . A water-stable metal-organic framework probe for Al3+/Ga3+/In3+ detection. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2601-2608. doi: 10.11862/CJIC.20250184

    9. [9]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    10. [10]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    11. [11]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    14. [14]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    15. [15]

      Bangdi GEXiaowei SONGZhiqiang LIANG . A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190

    16. [16]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    17. [17]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    18. [18]

      Danfeng ZhaoJing LinRushuo LiLiang ChuZhaokun WangXiubing HuangGe Wang . Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chinese Chemical Letters, 2025, 36(7): 110172-. doi: 10.1016/j.cclet.2024.110172

    19. [19]

      Peiyang DuLing YuanTong BaoYamin XiJiaxin LiYin BiLuli YinJing WangChao Liu . Facet effect of metal-organic frameworks on supporting co-catalysts for photocatalytic hydrogen peroxide production. Chinese Chemical Letters, 2025, 36(11): 110472-. doi: 10.1016/j.cclet.2024.110472

    20. [20]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

Metrics
  • PDF Downloads(5)
  • Abstract views(1283)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return