Citation: Zhao-Hui HUO, Xue-Rong WEI, Yong HUANG, Ze-Yu CHEN, Wei-Bing CHEN, Qi-Tong ZHANG, Gang ZHANG, Geng-Long WEN, Jun-Jie SHI. Peanut shell-based porous carbon supported Pd-Co catalyst for electrooxidation of methanol in alkaline media[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 2020-2032. doi: 10.11862/CJIC.2023.157 shu

Peanut shell-based porous carbon supported Pd-Co catalyst for electrooxidation of methanol in alkaline media

  • Corresponding author: Zhao-Hui HUO, huozhaohui@gdei.edu.cn
  • Received Date: 15 December 2022
    Revised Date: 25 August 2023

Figures(6)

  • Peanut shells were used as raw materials and activated to peanut shell-based porous carbon (HC) by KOH. Nitrogen adsorption-desorption studies showed that the obtained porous carbon featured a total surface area as high as 1 645 m2·g-1. Pd-Co/HC catalyst was prepared by the impregnation reduction method, in which HC was the carrier. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis demonstrated that Co in the catalyst was mainly in the form of Co and CoO, and Co was entered into the crystal lattice of Pd and formed a Pd-Co alloy. The TEM image of Pd-Co/HC0.5-700 showed that numerous Pd-Co nanoparticles were successfully dispersed in the prepared porous carbon with a small particle size (ca. 4 nm). Pd-Co/HC0.5-700 exhibited apparent electrocatalytic activity, CO tolerance, and stability towards methanol electrooxidation in alkaline media. This remarkable high performance can be attributed to the large surface area of the biomass carrier and the doping of Co into Pd.
  • 加载中
    1. [1]

      Ma W, Wang N, Lu Y, Lu Z Y, Tang X, Li X T. Synthesis of magnetic biomass carbon-based Bi2O3 photocatalyst and mechanism insight by a facile microwave and deposition method[J]. New J. Chem., 2019,43:2888-2898. doi: 10.1039/C8NJ04973D

    2. [2]

      Genovese M, Lian K. Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes[J]. J. Mater. Chem., 2017,5(8):3939-3947. doi: 10.1039/C6TA10382K

    3. [3]

      Peng C, Yan X B, Wang R T, Lang J W, Ou Y J, Xue Q J. Promising activated carbons derived from waste tea leaves and their application in high-performance supercapacitors electrodes[J]. Electrochim. Acta, 2013,87(1):401-408.

    4. [4]

      Li X Y, Wu G J. Porous carbon from corn flour prepared by H3PO4 carbonization combined with KOH activation for supercapacitors[J]. J. Energy Eng., 2021,9:18-25.

    5. [5]

      Tan J X, Yang J W, Liang Y R, Zheng M T, Hu H, Dong H W, Liu Y L, Xiao Y. The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors[J]. J. Colloid Interface Sci., 2021,585:778-786. doi: 10.1016/j.jcis.2020.10.058

    6. [6]

      Ye Y Y, Qian T T, Jiang H. Co-loaded N-doped biochar as a high-performance oxygen reduction reaction electrocatalyst by combined pyrolysis of biomass[J]. Ind. Eng. Chem. Res., 2020,59(35):15614-15623. doi: 10.1021/acs.iecr.0c03104

    7. [7]

      Kasturi P R, Selvan R K, Lee S Y. Pt decorated Artocarpus heterophyllus seed derived carbon as an anode catalyst for DMFC application[J]. RSC Adv., 2016,6(67):62680-62694. doi: 10.1039/C6RA05833G

    8. [8]

      Li R, Zhang Y L, Chu W L, Chen Z X, Wang J L. Adsorptive removal of antibiotics from water using peanut shells from agricultural waste[J]. RSC Adv., 2018,8:13546-13555. doi: 10.1039/C7RA11796E

    9. [9]

      Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy Environ. Sci., 2015,8(3):941-955. doi: 10.1039/C4EE02986K

    10. [10]

      Dong S Y, Shen L F, Li H S, Nie P, Zhu Y Y, Sheng Q, Zhang X G. Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors[J]. J. Mater. Chem., 2015,3(42):21277-21283. doi: 10.1039/C5TA05714K

    11. [11]

      Fang J, Gao B, Zimmerman A R, Ro K S, Chen J J. Physically (CO2) activated hydrochars from hickory and peanut hull: Preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium[J]. RSC Adv., 2016,6(30):24906-24911. doi: 10.1039/C6RA01644H

    12. [12]

      FANG H Y, ZHAO J C, KANG X Y, LI Y C. Ni/biomass-derived nitrogen-doped porous carbon nanocomposites: preparation and electrocatalysis for methanol oxidation reaction[J]. Chinese J. Inorg. Chem., 2022,38(10):1959-1969. doi: 10.11862/CJIC.2022.188

    13. [13]

      Liu Y, Chi M F, Mazumder V. Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol[J]. Chem. Mater., 2011,23(18):4199-4203. doi: 10.1021/cm2014785

    14. [14]

      Habibi B, Dadashpour E. Carbon-ceramic supported bimetallic Pt-Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media[J]. Int. J. Hydrog. Energy, 2013,38(13):5425-5434. doi: 10.1016/j.ijhydene.2012.06.045

    15. [15]

      Shen J F, Yan B, Shi M, Ma H W, Li N, Ye M X. Fast and facile preparation of reduced graphene oxide supported Pt-Co electrocatalyst for methanol oxidation[J]. Mater. Res. Bull., 2012,47(6):1486-1493. doi: 10.1016/j.materresbull.2012.02.025

    16. [16]

      Ding L X, Wang A L, Li G R, Liu Z Q, Zhao W X, Su C Y, Tong Y X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation[J]. J. Am. Chem. Soc., 2012,134(13):5730-5733. doi: 10.1021/ja212206m

    17. [17]

      Zhao Y, Fan L Z, Ren J L, Hong B. Electrodeposition of Pt-Ru and Pt-Ru-Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell[J]. Int. J. Hydrog. Energy, 2014,39:4544-4557. doi: 10.1016/j.ijhydene.2013.12.202

    18. [18]

      Chu Y H, Shul Y G. Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells[J]. Int. J. Hydrog. Energy, 2010,35(20):11261-11270. doi: 10.1016/j.ijhydene.2010.07.062

    19. [19]

      Sahu S C, Samantarat A K, Dash A, Juluri R R, Sahu R K, Mishra B K, Jena B K. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst[J]. Nano Res., 2013,6(9):635-643. doi: 10.1007/s12274-013-0339-1

    20. [20]

      Kumar K S, Haridoss P, Seshadri S K. Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation[J]. Surf. Coat. Technol., 2008,202(9):1764-1770. doi: 10.1016/j.surfcoat.2007.07.035

    21. [21]

      Wang Y, Sheng Z M, Yang H, Jiang S P, Li C M. Electrocatalysis of carbon black - or activated carbon nanotubes-supported Pd-Ag towards methanol oxidation in alkaline media[J]. Int. J. Hydrog. Energy, 2010,35(19):10087-10093. doi: 10.1016/j.ijhydene.2010.07.172

    22. [22]

      Qiu C C, Shang R, Xie Y F, Li C Y, Ma H Y. Electrocatalytic activity of bimetallic Pd-Ni thin films towards the oxidation of methanol and ethanol[J]. Mater. Chem. Phys., 2010,120(2/3):323-330.

    23. [23]

      YUAN Q X, CHEN W M, LÜ X R. Effect of one-dimensional/two-dimensional composite carbon support on methanol oxidation performance of pd catalysts[J]. Chinese J. Inorg. Chem., 2022,38(11):2165-2172.  

    24. [24]

      Li X W, Huang Q H, Zou Z Q, Xia B J, Yang H. Low temperature preparation of carbon-supported Pd-Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction[J]. Electrochim. Acta, 2008,53(22):6662-6667. doi: 10.1016/j.electacta.2008.04.032

    25. [25]

      Tominaka S, Momma T, Osaka T. Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes: Preparation and characterization[J]. Electrochim. Acta, 2008,53(14):4679-4686. doi: 10.1016/j.electacta.2008.01.069

    26. [26]

      Noto V D, Negro E, Lavina S, Gross S, Pace G. Pd-Co carbon-nitride electrocatalysts for polymer electrolyte fuel cells[J]. Electrochim. Acta, 2008,53(4):1604-1617.

    27. [27]

      Morales-Acosta D, Ledesma-Garcia J, Godinez L A, Rodríguez H G, Álvarez-Contreras L, Arriaga L G. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation[J]. J. Power Sources, 2010,195(2):461-465. doi: 10.1016/j.jpowsour.2009.08.014

    28. [28]

      Lei H, Zhang Q B. In situ electrochemical redox tuning of Pd-Co hybrid electrocatalysts for high-performance methanol oxidation: Strong metal-support interaction[J]. J. Colloid Interface Sci., 2021,588:476-484. doi: 10.1016/j.jcis.2020.12.091

    29. [29]

      Bernardo B, Claudio Z, Fabrizio G, Sonia C, Francesco B, Giuseppe A, Rosario M, Filippo P, Philippe M, Rosalinda I. Pd-Co-based electrodes for hydrogen production by water splitting in acidic media[J]. Materials, 2023,16(2):474-474. doi: 10.3390/ma16020474

    30. [30]

      Chen L, Zhang Y Z, Lin C H. Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries[J]. J. Mater. Chem., 2014,2(25):9684-9690. doi: 10.1039/C4TA00501E

    31. [31]

      Wang Y, Wang X, Li C M. Electrocatalysis of Pd-Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline medi[J]. Appl. Catal. B-Environ., 2010,99(1/2):229-234.

    32. [32]

      Celiktas M S, Alptekin F M. Conversion of model biomass to carbon-based material with high conductivity by using carbonization[J]. Energy, 2019,188116089. doi: 10.1016/j.energy.2019.116089

    33. [33]

      Shendage S S, Patil U B, Nagarkar J M. Electrochemical deposition of highly dispersed palladium nanoparticles on nafion-graphene film in presence of ferrous ions for ethanol electrooxidation[J]. Fuel Cells, 2013,13(3):364-370. doi: 10.1002/fuce.201300043

    34. [34]

      Rezaei M, Tabaian S H, Haghshenas D F. The role of electrodeposited Pd catalyst loading on the mechanisms of formic acid electrooxidation[J]. Electrocatalysis, 2014,5(2):193-203. doi: 10.1007/s12678-013-0181-y

    35. [35]

      Profeti L P R, Profeti D, Olivi P. Pt-Ru O2 electrodes prepared by thermal decomposition of polymeric precursors as catalysts for direct methanol fuel cell application[J]. Int. J. Hydrog. Energy, 2009,34(6):2747-2757. doi: 10.1016/j.ijhydene.2009.01.011

    36. [36]

      Hu Y, Mei T, Li J H, Wang J Y, Wang X B. Porous SnO2 hexagonal prism-attached Pd/rGO with enhanced electrocatalytic activity for methanol oxidation[J]. RSC Adv., 2017,7:29909-29915. doi: 10.1039/C7RA03659K

    37. [37]

      Shu C Y, Yang X D, Chen Y Z, Fang Y, Zhou Y P, Liu Y G. Nano-Fe3O4 grown on porous carbon and its effect on the oxygen reduction reaction for DMFCs with a polymer fiber membrane[J]. RSC Adv., 2016,6:37012-37017. doi: 10.1039/C6RA03173K

    38. [38]

      Liu J P, Ye J P, Xu C W, Jiang S P, Tong Y S. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti[J]. Electrochem. Commun., 2007,9(9):2334-2339. doi: 10.1016/j.elecom.2007.06.036

    39. [39]

      Xu M W, Gao G Y, Zhou W J. Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution[J]. J. Power Sources, 2008,175(1):217-220. doi: 10.1016/j.jpowsour.2007.09.069

    40. [40]

      Wang W M, Zheng D, Du C, Zou Z Q, Zhang X G, Xia B J, Yang H, Akins D L. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction[J]. J. Power Sources, 2007,167(2):243-249. doi: 10.1016/j.jpowsour.2007.02.013

    41. [41]

      Mancharan R, Goodenough J B. Methanol oxidation in acid on ordered NiTi[J]. J. Mater. Chem., 1992,2:875-887. doi: 10.1039/jm9920200875

    42. [42]

      Rostami H, Rostami A A, Omrani A. Investigation on ethanol electrooxidation via electrodeposited Pd-Co nanostructures supported on graphene oxid[J]. Int. J. Hydrog. Energy, 2015,40(33):10596-10604.

    43. [43]

      Singh R N, Sharma C S. Preparation of bimetallic Pd-Co nanoparticles on graphene support for use as methanol tolerant oxygen reduction electrocatalyst[J]. Eng. Technol. Appl. Sci. Res., 2012,2(6):295-301. doi: 10.48084/etasr.215

    44. [44]

      Hammer B, Nørskov J K. Theoretical surface science and catalysis—Calculations and concepts[J]. Adv. Catal., 2000,45:71-129.

    45. [45]

      Zhang Q, Zang B, Wang S Z. Surfactant-free synthesis of porous Au by a urea complex[J]. RSC Adv., 2019,9:23081-23085.

    46. [46]

      Rostami H, AliRostami A, Omrani A. Investigation on ethanol electrooxidation via electrodeposited Pd-Co nanostructures supported on graphene oxide[J]. Int. J. Hydrog. Energy, 2015,40(33):10596-10604.

    47. [47]

      Maiyalagan T, Scott K. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium[J]. J. Power Sources, 2010,195(16):5246-5251.

  • 加载中
    1. [1]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    2. [2]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    5. [5]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    6. [6]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    7. [7]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    8. [8]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    9. [9]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    10. [10]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    11. [11]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    12. [12]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    13. [13]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    14. [14]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    15. [15]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    16. [16]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    17. [17]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    18. [18]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    19. [19]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    20. [20]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

Metrics
  • PDF Downloads(4)
  • Abstract views(297)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return