Citation: Qi ZUO, Long-Fei MA. Synthesis and crystal structure of the charge transfer complexes of arylthiotetrathiafulvalenes and iodine[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1869-1876. doi: 10.11862/CJIC.2023.156 shu

Synthesis and crystal structure of the charge transfer complexes of arylthiotetrathiafulvalenes and iodine

  • Corresponding author: Long-Fei MA, malongfei@hnp.edu.cn
  • Received Date: 2 May 2023
    Revised Date: 13 June 2023

Figures(5)

  • Three charge-transfer (CT) complexes (1)(I3)·I2, (2)(I5)·I2, and (32+)(I3)2 have been prepared via solvent evaporation method comprising arylthio - substituted tetrathiafulvalene derivatives (Ar-S-TTF) and iodine. Single crystal X-ray diffraction, UV-Vis spectrum, and cyclic voltammetry were used to characterize the complexes. Complex (1)(I3)·I2 crystallizes in the C2/c space group. 1 takes the chair configuration. The asymmetric unit contains half of 1 ions, half of I3- ions, and half of I2 molecules. The charge transfer between compound 1 with iodine is consistent in the complex in solution. Complex (2)(I5)·I2 crystallizes in the P1 space group, and 2 takes the chair conformation. The asymmetric unit contains one 2 ion, one I5- ion, and one I2 molecule. Complex (32+)(I3)2 crystallizes in the Pbca space group, and 32+ takes the unique planar configuration. The asymmetric unit contains one 32+ ion and two I3- ions. Compounds 2 and 3 exhibit different charge transfers with iodine in solution and the complex. The iodine components in the complexes show various structures including the 1D chain of I3- or I5-/I2, and 2D iodine networks comprised of I2 and I3-.
  • 加载中
    1. [1]

      Williams J M, Ferraro J R, Thorn R J, Carlson K D, Geiser U, Wang H H, Kini A M, Whangbo M H. Organic superconductors (including fullerenes). Englewood Cliffs, NJ: Printice Hall, 1992.

    2. [2]

      Ishiguro T, Yamaji K, Saito G. Organic superconductors. 2nd ed. Berlin: Springer, 1998.

    3. [3]

      Fourmigué M, Batail P. Activation of hydrogen- and halogen-bonding interactions in tetrathiafulvalene-based crystalline molecular conductors[J]. Chem. Rev., 2004,104(11):5379-5418. doi: 10.1021/cr030645s

    4. [4]

      Mori H. Materials viewpoint of organic superconductors[J]. J. Phys. Soc. Jpn., 2006,75(5)051003. doi: 10.1143/JPSJ.75.051003

    5. [5]

      Wang H Y, Su J, Ma J P, Yu F, Leong C F, D'Alessandro D M, Kurmoo M, Zuo J L. Concomitant use of tetrathiafulvalene and 7,7,8,8-tetracyanoquinodimethane within the skeletons of metal-organic frameworks: Structures, magnetism, and electrochemistry[J]. Inorg. Chem., 2019,58(13):8657-8664. doi: 10.1021/acs.inorgchem.9b01000

    6. [6]

      Blake J A, Li W S, Lippolis V, Schröder M A, Devillanova F O, Gould R, Parsons S, Radek C. Template self-assembly of polyiodide networks[J]. Chem. Soc. Rev., 1998,27(3):195-206. doi: 10.1039/a827195z

    7. [7]

      Zeng M H, Wang Q X, Tan Y X, Hu S, Zhao H X, Long L S, Kurmoo M. Rigid pillars and double walls in a porous metal-organic framework: Single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity[J]. J. Am. Chem. Soc., 2010,132(8):2561-2563. doi: 10.1021/ja908293n

    8. [8]

      Yu F, Li D D, Cheng L, Yin Z, Zeng M H, Kurmoo M. Porous supramolecular networks constructed of one-dimensional metal-organic chains: Carbon dioxide and iodine capture[J]. Inorg. Chem., 2015,54(4):1655-1660. doi: 10.1021/ic502650z

    9. [9]

      Zeng M H, Yin Z, Tan Y X, Zhang W X, He Y P, Kurmoo M. Nanoporous cobalt(Ⅱ) MOF exhibiting four magnetic ground states and changes in gas sorption upon post-synthetic modification[J]. J. Am. Chem. Soc., 2014,136(12):4680-4688. doi: 10.1021/ja500191r

    10. [10]

      Tomase P, Marcin Ś, Rafał K. Molecular self-assembly of 1D infinite polyiodide helices in a phenanthrolinium salt[J]. Dalton Trans., 2021,50(8):2800-2806. doi: 10.1039/D0DT04042H

    11. [11]

      Ma L F, Peng H L, Lu X F, Liu L, Shao X F. A weaker donor shows higher oxidation state upon aggregation[J]. RSC Adv., 2018,8(31):17321-17324. doi: 10.1039/C8RA02956C

    12. [12]

      Lin J X, Martí-Rujas J, Metrangolo P, Pilati T, Radice S, Resnati G, Terraneo G. Solution and solid state synthesis of the discrete polyiodide I73- under modular cation templation[J]. Cryst. Growth Des., 2012,12(11):5757-5762. doi: 10.1021/cg301262k

    13. [13]

      Yin Z, Wang Q X, Zeng M H. Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework[J]. J. Am. Chem. Soc., 2012,134(10):4857-4863. doi: 10.1021/ja211381e

    14. [14]

      Madhu S, Evans H A, Vicky V T, Doan-Nguyen , John G L, Wu G, Michael L, Seshadri R, Wudl F. Infinite polyiodide chains in the pyrroloperylene-iodine complex: Insights into the starch-iodine and perylene-iodine complexes[J]. Angew. Chem. Int. Ed., 2016,55(28):8032-8035. doi: 10.1002/anie.201601585

    15. [15]

      Küpper F C, Feiters M C, Olofsson B, Kaiho T, Yanagida S, Zimmermann M B, Carpenter L J, Luther G W, Lu Z L, Jonsson M, Kloo L. Commemorating two centuries of iodine research: An interdisciplinary overview of current research[J]. Angew Chem. Int Ed., 2011,50(49):11598-11620. doi: 10.1002/anie.201100028

    16. [16]

      Savastano M, Bazzicalupi C, Gellini C, Bianchi A. Genesis of complex polyiodide networks: Insights on the blue box/I-/I2 ternary system[J]. Crystals, 2020,10(5)387. doi: 10.3390/cryst10050387

    17. [17]

      Yamada J, Sugimoto T. TTF chemistry: Fundamentals and applications of tetrahiafulvalenes. Berlin, Heidelberg, New York: Kodansha Ltd: Tokyo and Springer-Verlag, 2004.

    18. [18]

      Wang H Y, Cui L, Xie J Z, Leong C F, D'Alessandro D M, Zuo J L. Functional coordination polymers based on redox-active tetrathiafulvalene and its derivatives[J]. Coord. Chem. Rev., 2017,345(15):342-361.

    19. [19]

      Wang H Y, Ge J Y, Hua C, Jiao C Q, Wu Y, Leong C F, D'Alessandro D M, Liu T, Zuo J L. Photo- and electronically switchable spin-crossover iron(Ⅱ) metal-organic frameworks based on a tetrathiafulvalene ligand[J]. Angew. Chem. Int. Ed., 2017,56(20):5465-5470. doi: 10.1002/anie.201611824

    20. [20]

      Armarego W L F, Chai C L L. Purification of laboratory chemicals. 5th ed. Amsterdam, Boston: Butterworth-Heinemann, 2003.

    21. [21]

      Sun J B, Lu X F, Shao J F, Cui Z L, Shao Y, Jiang G Y, Yu W, Shao X F. Straightforward access to aryl-substituted/fused 1,3-dithiole-2-chalcogenones by Cu-catalyzed C—S coupling between aryl iodides and zinc-thiolate complex (TBA)2[Zn(DMIT)2][J]. RSC Adv., 2013,3(26):10193-10196. doi: 10.1039/c3ra41349g

    22. [22]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    23. [23]

      Sheldrick G M. SHELXL-97, A program for crystal structure refinement. University of Göttingen, Germany, 1997.

    24. [24]

      Ma L F, Peng H L, Lu X F, Liu L, Shao X F. Building up 1-D, 2-D, and 3-D polyiodide frameworks by finely tuning the size of aryls on Ar-S-TTF in the charge-transfer (CT) complexes of Ar-S-TTFs and iodine[J]. Chin. J. Chem., 2018,36(9):845-850. doi: 10.1002/cjoc.201800215

    25. [25]

      Zhang S X, Lu X F, Sun J B, Zhao Y L, Shao X F. Honeycomb supramolecular frameworks of organic-inorganic hybrid cluster composed of cation radical and Keggin-type polyoxometalate[J]. CrystEngComm, 2015,17(22):4110-4116. doi: 10.1039/C5CE00510H

    26. [26]

      Guionneau P, Kepert C J, Bravic G, Chasseau D, Truter M R, Kurmoo M, Day P. Determining the charge distribution in BEDT-TTF salts[J]. Synth. Met., 1997,86(1):1973-1974.

    27. [27]

      Kloo L, Rosdahl J, Svensson P H. On the intra - and intermolecular bonding in polyiodides[J]. Eur. J. Inorg. Chem., 2002(5):1203-1209.

    28. [28]

      Korobeinikov N A, Usoltsev A N, Shentseva I A, Abramov P A, Korolkov I V, Plusnin P E, Kolesov B A, Sokolov M N, Adonin S A. Triiodide salts of 4-dimethylamino - and 3-bromo-1-methylpyridinum: Crystal structures and features of non-covalent I⋯I interaction in solids[J]. J. Struct. Chem., 2022,63(6):988-995. doi: 10.1134/S0022476622060178

    29. [29]

      Savastano M, Bazzicalupi C, Bianchi A. Novel cyclen-polyiodide complexes: A reappraisal of Ⅰ—Ⅰ covalent and secondary bond limits[J]. Dalton Trans., 2022,51(28):10728-10739. doi: 10.1039/D2DT00185C

    30. [30]

      Sun J B, Lu X F, Shao J F, Li X X, Zhang S X, Wang B L, Zhao J L, Shao Y L, Fang R, Wang Z H, Yu W, Shao X F. Molecular and crystal structure diversity, and physical properties of tetrathiafulvalene derivatives substituted with various aryl groups through sulfur bridges[J]. Chem.-Eur. J., 2013,19(37):12517-12525. doi: 10.1002/chem.201301819

    31. [31]

      Lu X F, Sun J B, Liu Y, Shao J F, Ma L F, Zhang S X, Zhao J L, Shao Y, Zhang H L, Wang Z H, Shao X F. Decorating tetrathiafulvalene (TTF) with fluorinated phenyls through sulfur bridges: Facile synthesis, properties, and aggregation through fluorine interactions[J]. Chem.-Eur. J., 2014,20(31):9650-9656. doi: 10.1002/chem.201402327

    32. [32]

      MA L F, ZHU Z H, HUANG X B. Synthesis and crystal structure of arylthiotetrathiafulvalenes and cupric bromide charge transfer complexes[J]. Chinese J. Inorg. Chem., 2022,38(5):821-828.  

    33. [33]

      Lu X F, Sun J B, Zhang S X, Ma L F, Liu L, Qi H, Shao Y L, Shao X F. Donor-acceptor type co-crystals of arylthio-substituted tetrathiafulvalenes and fullerenes[J]. Beilstein J. Org. Chem., 2015,11:1043-1051. doi: 10.3762/bjoc.11.117

    34. [34]

      Ma L F, Sun J B, Lu X F, Zhang S X, Qi H, Liu L, Shao Y L, Shao X F. Copper ion salts of arylthiotetrathiafulvalenes: Synthesis, structure diversity and magnetic properties[J]. Beilstein J. Org. Chem., 2015,11:850-859. doi: 10.3762/bjoc.11.95

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    9. [9]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

Metrics
  • PDF Downloads(7)
  • Abstract views(458)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return