Citation: Song-Song YANG, Lu HAN, He-Qing CAI, Kun HU, Ru-Ping LIU, Zhi-Cheng SUN, Yan WEI. In situ synthesis of Ag NPs/MoS2 composites via microwave and their electrochemical properties[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1848-1856. doi: 10.11862/CJIC.2023.155 shu

In situ synthesis of Ag NPs/MoS2 composites via microwave and their electrochemical properties

Figures(7)

  • Molybdenum disulfide nanosheets (MoS2) are affected by charged impurities, structural defects and traps, and their easy aggregation leads to the deterioration of their electron transfer performance, which limits their application. In this study, Ag NPs/MoS2 composites were prepared by combining a few layers of MoS2 nanosheets with silver nanoparticles (Ag NPs), in order to improve the electrochemical performance of MoS2 nanosheets. Firstly, the low-layer MoS2 nanosheets were prepared by ultrasonic assisted liquid phase stripping method, and then the Ag NPs/MoS2 composites were prepared by microwave reduction method. After Ag NPs/MoS2 composites were modified onto screen printed electrodes (SPE), the peak current of cyclic voltammetry (CV) curve was 1.8 times of that of MoS2 modified SPE, and the peak current of square wave voltammetry (SWV) curve was 3.4 times of that of MoS2 modified SPE. The electron transfer impedance (Ret) of electrochemical impedance spectroscopy (EIS) was only 167 Ω, which was significantly lower than that of MoS2/SPE (320 Ω), indicating that compared to that of MoS2 nanosheets, the electrochemical performance of Ag NPs/MoS2 composites is significantly enhanced. Subsequently, the conductive mechanism of the highly conductive Ag NPs/MoS2 composites was also speculated. Finally, an electrochemical sensor was constructed based on Ag NPs/MoS2 composites and used for the detection of prostate specific antigen (PSA). The results showed that the detection limit of the sensor for PSA was 0.009 ng·mL-1, the linear detection range was 0.1~1 000 ng·mL-1, and the sensitivity was 0.011 μA·mL·ng-1.
  • 加载中
    1. [1]

      Yang R J, Fan Y Y, Zhang Y F, Mei L, Zhu R S, Qin J Q, Hu J G, Chen Z X, Ng Y H, Voiry D, Li S, Lu Q Y, Wang Q, Yu J C, Zeng Z Y. 2D transition metal dichalcogenides for photocatalysis[J]. Angew. Chem. Int. Ed., 2023,62(13)e202218016. doi: 10.1002/anie.202218016

    2. [2]

      Luo P F, Liu C, Lin J, Duan X P, Zhang W J, Ma C, Lv Y W, Zou X M, Liu Y A, Schwierz F, Qin W J, Liao L, He J, Liu X Q. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation[J]. Nat. Electron., 2022,5(12):849-858. doi: 10.1038/s41928-022-00877-w

    3. [3]

      Sri S, Chauhan D, Lakshmi G B V S, Thakar A, Solanki P R. MoS2 nanoflower based electrochemical biosensor for TNF alpha detection in cancer patients[J]. Electrochim. Acta, 2022,405139736. doi: 10.1016/j.electacta.2021.139736

    4. [4]

      Rashidi S, Caringula A, Nguyen A, Obi I, Obi C, Wei W. Recent progress in MoS2 for solar energy conversion applications[J]. Front. Energy, 2019,13(2):251-268. doi: 10.1007/s11708-019-0625-z

    5. [5]

      Rahman A, Jennings J R, Tan A L, Khan M M. Molybdenum disulfide-based nanomaterials for visible-light-induced photocatalysis[J]. ACS Omega, 2022,7(26):22089-22110. doi: 10.1021/acsomega.2c01314

    6. [6]

      Wang X Y, Chen X Y, Ma J Y, Gou S F, Guo X J, Tong L, Zhu J Q, Xia Y, Wang D, Sheng C M, Chen H L, Sun Z Z, Ma S L, Riaud A, Xu Z H, Cong C X, Qiu Z J, Zhou P, Xie Y F, Bian L F, Bao W Z. Pass-transistor logic circuits based on wafer-scale 2D semiconductors[J]. Adv Mater., 2022,34(48)2202472. doi: 10.1002/adma.202202472

    7. [7]

      Kim J, Jung M, Lim D U, Rhee D, Jung S H, Cho H K, Kim H K, Cho J H, Kang J. Area-selective chemical doping on solution-processed MoS2 thin-film for multi-valued logic gates[J]. Nano Lett., 2022,22(2):570-577. doi: 10.1021/acs.nanolett.1c02947

    8. [8]

      Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Lett., 2013,13(6):2615-2622. doi: 10.1021/nl4007479

    9. [9]

      Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L J, Wang B G, Sun L T, Wang J L, Zhang G, Zhang Y W, Shi Y, Wang X R. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering[J]. Nat. Commun., 2014,5(1)5290. doi: 10.1038/ncomms6290

    10. [10]

      Mphuthi N, Sikhwivhilu L, Ray S S. Functionalization of 2D MoS2 nanosheets with various metal and metal oxide nanostructures: their properties and application in electrochemical sensors[J]. Biosensors Basel, 2022,12386. doi: 10.3390/bios12060386

    11. [11]

      Yoon J, Lim J, Shin M, Lee S N, Choi J W. Graphene/MoS2 nanohybrid for biosensors[J]. Materials, 2021,14(3)518. doi: 10.3390/ma14030518

    12. [12]

      Raju V, Kumar Y V N, Jetti V R, Basak P. MoS2/polythiophene composite cathode as a potential host for rechargeable aluminum batteries: Deciphering the impact of processing on the performance[J]. ACS Appl. Energy Mater., 2021,4(9):9227-9239. doi: 10.1021/acsaem.1c01480

    13. [13]

      Li Y, Gu Q F, Johannessen B, Zheng Z, Li C, Luo Y T, Zhang Z Y, Zhang Q, Fan H I, Luo W B, Liu B L, Dou S X, Liu H K. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution[J]. Nano Energy, 2021,84105898. doi: 10.1016/j.nanoen.2021.105898

    14. [14]

      Kamruzzaman M, Zapien J A, Afrose R, Anam T K, Rahman M, Liton M N H, Helal M A, Khan M K R, Emmanuel A A. A comparative study of Ag doping effects on the electronic, optical, carrier conversion, photocatalytic and electrical properties of MoS2[J]. Mater. Sci. Eng. B Adv. Funct. Solid State Mater., 2021,273115442. doi: 10.1016/j.mseb.2021.115442

    15. [15]

      Rong J, Zhu G L, Osterloh W R, Fang Y Y, Ou Z P, Qiu F X, Kadish K M. In situ construction MoS2-Pt nanosheets on 3D MOF-derived S, N-doped carbon substrate for highly efficient alkaline hydrogen evolution reaction[J]. Chem. Eng. J., 2021,412127556. doi: 10.1016/j.cej.2020.127556

    16. [16]

      Krishnan U, Kaur M, Singh K, Kaur G, Singh P, Kumar M, Kumar A. MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant[J]. J. Mater. Sci. Mater. Electron., 2019,30(4):3711-3721. doi: 10.1007/s10854-018-00653-7

    17. [17]

      Van T D, Thuy N D T, Phuong T D V, Thi N N, Thi T N, Phuong T N, Van T V, Vuong-Pham H, Dinh T P. High-performance nonenzymatic electrochemical glucose biosensor based on AgNP-decorated MoS2 microflowers[J]. Curr. Appl. Phys., 2022,43:116-123. doi: 10.1016/j.cap.2022.09.001

    18. [18]

      Ansari J R, Singh N, Anwar S, Mohapatra S, Datta A. Silver nanoparticles decorated two dimensional MoS2 nanosheets for enhanced photocatalytic activity[J]. Colloid Surf. A Physicochem. Eng. Asp., 2022,635128102. doi: 10.1016/j.colsurfa.2021.128102

    19. [19]

      Pan L, Liu Y T, Xie X M, Zhu X D. Coordination-driven hierarchical assembly of silver nanoparticles on MoS2 nanosheets for improved lithium storage[J]. Chem. Asian. J., 2014,9(6):1519-1524. doi: 10.1002/asia.201301690

    20. [20]

      Nguyen T P, Kim I T. Ag Nanoparticle-decorated MoS2 nanosheets for enhancing electrochemical performance in lithium storage[J]. Nanomaterials, 2021,11(3)626. doi: 10.3390/nano11030626

    21. [21]

      Sharma S, Thakur M, Deb M K. Preparation of silver nanoparticles by microwave irradiation[J]. Curr. Nanosci., 2008,4:138-140. doi: 10.2174/157341308784340930

    22. [22]

      Du C X, Han L, Dong S L, Li L H, Wei Y. A novel procedure for fabricating flexible screen-printed electrodes with improved electrochemical performance[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016,137012060. doi: 10.1088/1757-899X/137/1/012060

    23. [23]

      Wang P J, Tsai P C, Yang Z S, Lin S Y, Sun C K. Revealing the interlayer van der Waals coupling of bi-layer and tri-layer MoS2 using terahertz coherent phonon spectroscopy[J]. Photoacoustics, 2022,28100412. doi: 10.1016/j.pacs.2022.100412

    24. [24]

      Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2[J]. ACS nano, 2010,4(5):2695-2700. doi: 10.1021/nn1003937

    25. [25]

      Fu Y J, Wang C R, Wang L L, Peng X, Wu B H, Sun X Q, Chen X S. Synthesis and electrochemical property of few-layer molybdenum disulfide nanosheets[J]. Jpn. J. Appl. Phys., 2016,55(12)125201. doi: 10.7567/JJAP.55.125201

    26. [26]

      Liu J. Synthesis and Electrochemical Properties of A NPs/rGO and AgNPs/MoS2 Composites. Taiyuan: Taiyuan University of Technology, 2017: 33-44

    27. [27]

      Han L, Liu C M, Dong S L, Du C X, Zhang X Y, Li L H, Wei Y. Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen[J]. Biosens. Bioelectron., 2017,87:466-472. doi: 10.1016/j.bios.2016.08.004

    28. [28]

      Gui J C, Han L, Du C X, Yu X N, Hu K, Li L H. An efficient label-free immunosensor based on ce-MoS2/AgNR composites and screen-printed electrodes for PSA detection[J]. J. Solid State Electrochem., 2021,25:973-982. doi: 10.1007/s10008-020-04872-z

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    7. [7]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(6)
  • Abstract views(451)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return