Citation: Wen-Xiang GAO, Jie WEN, Jie DENG, Hai-Di XU, Yong-Dong CHEN. Effect of hydrothermal aging on NH3-SCR performance of Cu-modified W/CeTi catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1877-1886. doi: 10.11862/CJIC.2023.153 shu

Effect of hydrothermal aging on NH3-SCR performance of Cu-modified W/CeTi catalyst

Figures(8)

  • CuW/CeTi and W/CuCeTi catalysts were prepared by impregnation method. The effects of different action modes of Cu on denitrification performance of NH3 selective catalytic reduction of NOx (NH3-SCR) reaction were investigated. Studies showed that fresh CuW/CeTi and W/CuCeTi exhibited excellent activity at low temperature. After 800 ℃ and 10 h hydrothermal aging, W/CuCeTi showed better denitration performance than CuW/CeTi, which proves that W/CuCeTi has higher hydrothermal stability. Then, these catalysts were characterized by transmission electron microscope (TEM), X - ray diffraction (XRD), Raman spectrum (Raman), N2 physical adsorption - desorption, X-ray photoelectron spectroscopy (XPS), ammonia temperature-programmed desorption (NH3-TPD) and hydrogen temperature-programmed reduction (H2-TPR). It was found that the Cu-O-Ce structure formed by Cu doping can improve the anti-sintering ability of CeTi, weaken the interaction of W-CeO2, and thus inhibits the formation of Ce2(WO4)3 in the aging process. Therefore, W/CuCeTi shows better hydrothermal stability.
  • 加载中
    1. [1]

      Boyano A, Lázaro M J, Cristiani C, Maldonado-Hodar F J, Forzatti P, Moliner R. A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3[J]. Chem. Eng. J., 2009,149:173-182. doi: 10.1016/j.cej.2008.10.022

    2. [2]

      Wu Q, Chen X P, Mi J X, Cai S X, Ma L, Zhao W T, Chen J J, Li J H. The absence of oxygen in sulfation promotes the performance of the sulfated CeO2 catalyst for low-temperature selective catalytic reduction of NOx by NH3: Redox property versus acidity[J]. ACS Sustain Chem. Eng., 2021,9:967-979. doi: 10.1021/acssuschemeng.0c08427

    3. [3]

      He G Z, Gao M, Peng Y, Yu Y B, Shan W P, He H. Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts[J]. Environ. Sci. Technol., 2021,55:6995-7003. doi: 10.1021/acs.est.0c08214

    4. [4]

      Chapman D M. Behavior of titania-supported vanadia and tungsta SCR catalysts at high temperatures in reactant streams: Tungsten and vanadium oxide and hydroxide vapor pressure reduction by surficial stabilization[J]. Appl. Catal. A Gen., 2011,392:143-150. doi: 10.1016/j.apcata.2010.11.005

    5. [5]

      Li J H, Chang H Z, Ma L, Hao J M, Yang R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review[J]. Catal. Today, 2011,175:147-156. doi: 10.1016/j.cattod.2011.03.034

    6. [6]

      Zhang G D, Han W L, Zhao H J, Zong L Y, Tang Z C. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction[J]. Appl. Catal. B-Environ., 2018,226:117-126. doi: 10.1016/j.apcatb.2017.12.030

    7. [7]

      Wang D, Peng Y, Yang Q L, Hu F Y, Li J H, Crittenden J. NH3-SCR performance of WO3 blanketed CeO2 with different morphology: Balance of surface reducibility and acidity[J]. Catal. Today, 2019,332(15):42-48.

    8. [8]

      Arfaoui J, Ghorbel A, Petitto C, Delahay G. New MoO3-CeO2-ZrO2 and WO3-CeO2-ZrO2 nanostructured mesoporous aerogel catalysts for the NH3-SCR of NO from diesel engine exhaust[J]. J. Ind. Eng. Chem., 2021,95:182-189. doi: 10.1016/j.jiec.2020.12.021

    9. [9]

      Li J Y, Song Z X, Ning P, Zhang Q L, Liu X, Li H, Huang Z Z. Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2-ZrO2-WO3 catalyst[J]. J. Rare Earths, 2015,33:726-735. doi: 10.1016/S1002-0721(14)60477-4

    10. [10]

      Tinku B, Andreas B, Martin E, Oliver K. Hydrothermally Stable WO3/ZrO2-Ce0.6Zr0.4O2 Catalyst for the Selective Catalytic Reduction of NO with NH3[J]. Top. Catal., 2013,56:23-28. doi: 10.1007/s11244-013-9923-6

    11. [11]

      Cheng K, Liu J, Zhang T, Li J M, Zhao Z, Wei Y C, Jiang G Y, Duan A J. Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst[J]. J. Environ. Sci., 2014,26:2106-2113. doi: 10.1016/j.jes.2014.08.010

    12. [12]

      Cong Q L, Chen L, Wang X X, Ma H Y, Zhao J K, Li S J, Hou Y, Li W. Promotional effect of nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of NO with NH3[J]. Chem. Eng. J., 2020,379122302. doi: 10.1016/j.cej.2019.122302

    13. [13]

      Lian Z H, Shan W P, Wang M, He H, Feng Q C. The balance of acidity and redox capability over modified CeO2 catalyst for the selective catalytic reduction of NO with NH3[J]. J. Environ. Sci., 2019,79:273-279. doi: 10.1016/j.jes.2018.11.018

    14. [14]

      Yao X J, Ma K L, Zou W X, He S G, An J B, Yang F, Dong L. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chin. J. Catal., 2017,38:146-159. doi: 10.1016/S1872-2067(16)62572-X

    15. [15]

      Iwasaki M, Dohmae K, Nagai Y, Sudo E, Tanaka T. Experimental assessment of the bifunctional NH3-SCR pathway and the structural and acid-base properties of WO3 dispersed on CeO2 catalysts[J]. J. Catal., 2018,359:55-67. doi: 10.1016/j.jcat.2017.12.032

    16. [16]

      Liu B, Li C M, Zhang G Q, Yao X S, Chuang S S C, Li Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods[J]. ACS Catal., 2018,8:10446-10456. doi: 10.1021/acscatal.8b00415

    17. [17]

      Can F, Berland S, Royer S, Courtois X, Duprez D. Composition-dependent performance of CexZr1-xO2 Mixed-oxide-supported WO3 catalysts for the NOx storage reduction-selective catalytic reduction coupled process[J]. ACS Catal., 2013,3:1120-1132. doi: 10.1021/cs3008329

    18. [18]

      Luo W, Rong J, Zhao W X, Kang K K, Long L L, Yao X J. Morphology and crystal-plane dependence of CeO2-TiO2 catalysts: Activity and mechanism for the selective catalytic reduction of NOx with NH3[J]. Chem. Eng. J., 2022,444136488. doi: 10.1016/j.cej.2022.136488

    19. [19]

      Yao X J, Chen L, Cao J, Chen Y, Tian M, Yang F M, Sun J F, Tang C J, Dong L. Enhancing the de NOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification[J]. Chem. Eng. J., 2019,369:46-56. doi: 10.1016/j.cej.2019.03.052

    20. [20]

      Hao Z F, Liu G Q, Ma N, Zhang H, Li Y, Xia Y G, Zhang D P, Zhan S H. Oxygen-vacancy mediated acidity and redox properties on WOx/Cu-doped CeO2 for the removal of NOx[J]. J. Environ. Chem. Eng., 2021,9106024. doi: 10.1016/j.jece.2021.106024

    21. [21]

      Tan W, Xie S H, Wang X, Xu J T, Yan Y, Ma K L, Cai Y D, Ye K L, Gao F, Dong L, Liu F D. Determination of intrinsic active sites on CuO-CeO2-Al2O3 catalysts for CO oxidation and NO reduction by CO: Differences and connections[J]. ACS Catal., 2022,12:12643-12657. doi: 10.1021/acscatal.2c03222

    22. [22]

      Xie S H, Tan W, Li Y J, Ma L, Ehrlich S N, Deng J G, Xu P, Gao F, Dong L, Liu F D. Copper single atom-triggered niobia-ceria catalyst for efficient low-temperature reduction of nitrogen oxides[J]. ACS Catal., 2022,12:2441-2453. doi: 10.1021/acscatal.1c05661

    23. [23]

      Zhang T R, Ma S B, Chen L Q, Li R, Leng X S, Li Y S, Yuan F L, Niu X Y, Zhu Y J. Effect of Cu doping on the SCR activity over the CumCe0.1-mTiOx (m=0.01, 0.02 and 0.03) catalysts[J]. Appl. Catal. A Gen., 2019,570:251-261. doi: 10.1016/j.apcata.2018.11.025

    24. [24]

      Jiang H, Guan B, Peng X S, Zhan R, Lin H, Huang Z. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction[J]. Chem. Eng. J., 2020,379122358. doi: 10.1016/j.cej.2019.122358

    25. [25]

      Ma Y, Cheng S Q, Wu X D, Shi Y Z, Cao L, Liu L P, Ran R, Si Z C, Liu J B, Weng D. Low-temperature solid-state ion-exchange method for preparing Cu-SSZ-13 selective catalytic reduction catalyst[J]. ACS Catal., 2019,9:6962-6973. doi: 10.1021/acscatal.9b01730

    26. [26]

      Luo J Y, Gao F, Kamasamudram K, Currier N, Peden C H F, Yezerets A. New insights into Cu/SSZ-13 SCR catalyst acidity. Part Ⅰ: Nature of acidic sites probed by NH3 titration[J]. J. Catal., 2017,348:291-299.

    27. [27]

      Zheng H S, Keith J M. Ignition analysis of wall-flow monolith diesel particulate filters[J]. Catal. Today, 2004,98:403-412. doi: 10.1016/j.cattod.2004.08.008

    28. [28]

      Mamede A S, Payen E, Grange P, Poncelet G, Ion A, Alifanti M, Ipâ rvulescu V. Characterization of WOx/CeO2 catalysts and their reactivity in the isomerization of hexane[J]. J. Catal., 2004,223(1):1-12. doi: 10.1016/j.jcat.2004.01.008

    29. [29]

      Peng Y, Li K Z, Li J H. Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study[J]. Appl. Catal. B-Environ., 2013,140:483-492.

    30. [30]

      Moellmer J, Celer E B, Luebke R, Cairns A J, Staudt R, Eddaoudi M, Thommes M. Insights on adsorption characterization of metal-organic frameworks: A benchmark study on the novel soc-MOF[J]. Microporous Mesoporous Mat., 2010,129:345-353. doi: 10.1016/j.micromeso.2009.06.014

    31. [31]

      Gao F Y, Tang X L, Yi H H, Li J Y, Zhao S Z, Wang J G, Chu C, Li C L. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chem. Eng. J., 2017,317:20-31. doi: 10.1016/j.cej.2017.02.042

    32. [32]

      Sudarsanam P, Hillary B, Amin M H, Hamid S B A, Bhargava S K. Structure-activity relationships of nanoscale MnOx/CeO2 heterostructured catalysts for selective oxidation of amines under eco-friendly conditions[J]. Appl. Catal. B-Environ., 2016,185:213-224. doi: 10.1016/j.apcatb.2015.12.026

    33. [33]

      You X C, Sheng Z Y, Yu D Q, Yang L, Xiao X, Wang S. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature[J]. Appl. Surf. Sci., 2017,423:845-854. doi: 10.1016/j.apsusc.2017.06.226

    34. [34]

      Geng Y, Chen X L, Yang S J, Liu F D, Shan W P. Promotional effects of Ti on a CeO2-MoO3 catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Appl. Mater. Interfaces, 2017,9:16951-16958. doi: 10.1021/acsami.6b05380

    35. [35]

      Jiang B Q, Liu Y, Wu Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J. Hazard. Mater., 2009,162:1249-1254. doi: 10.1016/j.jhazmat.2008.06.013

    36. [36]

      Lykaki M, Pachatouridou E, Carabineiro S A C, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M. Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts[J]. Appl. Catal. B-Environ., 2018,230:18-28. doi: 10.1016/j.apcatb.2018.02.035

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

Metrics
  • PDF Downloads(3)
  • Abstract views(448)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return