Citation: Su ZHANG, Qiu-Hong YANG, Qi-Di LI. Dielectric properties of low-temperature sintered NaBi(WO4)2 ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1923-1930. doi: 10.11862/CJIC.2023.149 shu

Dielectric properties of low-temperature sintered NaBi(WO4)2 ceramics

  • Corresponding author: Qiu-Hong YANG, yangqiuhong@shu.edu.cn
  • Received Date: 3 March 2023
    Revised Date: 22 August 2023

Figures(12)

  • A novel NaBi(WO4)2 (NBW) ceramic prepared by solid-phase synthesis, the phase structure, morphology, sintering properties, and microwave dielectric properties of NBW ceramic were investigated. NBW is a chemical properties stable compound and was used without special packaging. The NBW ceramic can be sintered densification at temperatures from 625 to 800 ℃ for 1-4 h. The X-ray diffraction showed that the NBW ceramic sintered at temperatures from 625 to 800 ℃ for 2 h is a tetragonal crystal scheelite structure single-phase ceramic. With the increase of sintered temperature, the permittivity and quality factor (Qf value) first increased then decreased, while the temperature coefficient of resonant frequency gradually decreased. The dielectric properties of NBW ceramic sintered at 650 ℃ for 2 h were permittivity of 14.36, Qf of 16 503 GHz, and temperature coefficient of resonant frequency of -1.055 ×10-5-1. When NBW was co-fired with Ag, it reacted with Ag to form Ag2W2O7, but NBW had chemical compatibility with Au and Al.
  • 加载中
    1. [1]

      Sebastian M T, Jantunen H. Low loss dielectric materials for LTCC applications: A review[J]. Int. Mater. Rev., 2013,53(2):57-90.

    2. [2]

      Yu H T, Liu J S, Zhang W L, Zhang S R. Ultra-low sintering temperature ceramics for LTCC applications: A review[J]. J. Mater. Sci-Mater. Electron., 2015,26(12):9414-9423. doi: 10.1007/s10854-015-3282-y

    3. [3]

      Sebastian M T, Wang H, Jantunen H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review[J]. Curr. Opin. Solid State Mater. Sci., 2016,20(3):151-170. doi: 10.1016/j.cossms.2016.02.004

    4. [4]

      Imanaka Y. Multilayered low temperature cofired ceramics (LTCC) technology. New York: Springer Science & Business Media, 2005:1-98

    5. [5]

      Yu H T, Ju K, Wang K M. A novel glass-ceramic with ultra-low sintering temperature for LTCC Application[J]. J. Am. Ceram. Soc., 2014,97(3):704-707. doi: 10.1111/jace.12854

    6. [6]

      Xi J, Cheng G H, Liu F, Shang F, Xu J, Zhou C R, Yuan C G, Yuan C L. Synthesis, microstructure and characterization of ultra-low permittivity CuO-ZnO-B2O3-Li2O glass/Al2O3 composites for ULTCC application[J]. Ceram. Int., 2017,18(45):24431-24436.

    7. [7]

      Pullar R C, Farrah S, Alford N M. MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics[J]. J. Eur. Ceram. Soc., 2007,27(2/3):1059-1063.

    8. [8]

      Wang X Y, Lv J Q, Xu Y, Zhang L C, Shen Y, Zhou H F, Di Z, Song K X, Guo H, Shi F. Dielectric responses and structure-property relationships of Ca1-xBaxWO4 composite microwave dielectric ceramics[J]. J. Alloy. Compd., 2022,925166669. doi: 10.1016/j.jallcom.2022.166669

    9. [9]

      Zhang Q, Xu L L, Tang X L, Zhang H W, Zhou Y T, Jing Y L, Li Y N, Su H. Structural characteristics and microwave dielectric properties of Zn1-xBixVxW1-xO4-based ceramics for LTCC applications[J]. J. Eur. Ceram. Soc., 2022,42(13):5691-5697. doi: 10.1016/j.jeurceramsoc.2022.06.033

    10. [10]

      Zhou D, Wang H, Pang L X, Randall C A, Yao X. Bi2O3-MoO3 binary system: An alternative ultralow sintering temperature microwave dielectric[J]. J. Am. Ceram. Soc., 2009,92(10):2242-2246. doi: 10.1111/j.1551-2916.2009.03185.x

    11. [11]

      Valant M, Suvorov D. Chemical compatibility between silver electrodes and low-firing binary-oxide compounds conceptual study[J]. J. Am. Ceram. Soc., 2000,83(11):2721-2729.

    12. [12]

      Valant M, Suvorov D. Glass-free low-temperature cofired ceramics: Calcium germanates, silicates and tellurates[J]. J. Eur. Ceram. Soc., 2004,24(6):1715-1719. doi: 10.1016/S0955-2219(03)00483-7

    13. [13]

      Ohashi M, Ogawa H, Kan A, Tanaka E. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]. J. Eur. Ceram. Soc., 2005,25(12):2877-2881. doi: 10.1016/j.jeurceramsoc.2005.03.158

    14. [14]

      Yoon S H, Kim D W, Cho S Y, Hong K S. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. J. Eur. Ceram. Soc., 2006,26(10/11):2051-2054.

    15. [15]

      Fang L, Wei Z, Guo H H, Sun Y H, Tang Y, Li C C. Phase composition and microwave dielectric properties of low-firing Li2A2W3O12 (A=Mg, Zn) ceramics[J]. J. Mater. Sci-Mater. Electro., 2015,26(8):5892-5895. doi: 10.1007/s10854-015-3158-1

    16. [16]

      Bian J J, Wu J Y. Designing of glass-free LTCC microwave ceramic Ca1-x(Li0.5)xWO4 by crystal chemistry[J]. J. Am. Ceram. Soc., 2012,95(1):318-323. doi: 10.1111/j.1551-2916.2011.04790.x

    17. [17]

      Zhang S, Su H, Zhang H, Jing Y L, Tang X L. Microwave dielectric properties of CaWO4-Li2TiO3 ceramics added with LBSCA glass for LTCC applications[J]. Ceram. Int., 2016,42(14):15242-15246. doi: 10.1016/j.ceramint.2016.06.161

    18. [18]

      Huang B, Chen G, Xia T, Shang F. Microwave dielectric properties of Li2WO4-added SrWO4 ceramics for LTCC applications[J]. J. Mater. Sci-Mater. Electro., 2022,33(27):21925-21934. doi: 10.1007/s10854-022-08980-6

    19. [19]

      Zhou D, Randall C A, Pang L X, Wang H, Guo J, Zhang G Q, Wu X G, Shui L, Yao X. Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature[J]. J. Am. Ceram. Soc., 2011,94(2):348-350. doi: 10.1111/j.1551-2916.2010.04312.x

    20. [20]

      Dong H L, Hu C X, Wang W J, Bao H P, Liu W J, Yang B. Novel low-permittivity, low-sintering-temperature Na2WO4 microwave dielectric ceramics for LTCC applications[J]. J. Ceram. Sci. Technol., 2018,9(4):471-476.

    21. [21]

      Hao J, Guo J, Zhao E, Si M M, Yuan X F, Yao F Z, Wang H. Grain size effect on microwave dielectric properties of Na2WO4 ceramics prepared by cold sintering process[J]. Ceram. Int., 2020,46(17):27193-27198. doi: 10.1016/j.ceramint.2020.07.200

    22. [22]

      Hanuza J, Benzar A, Haznar A, Maczka M, Pietraszko A, Maas van der J H. Structure and vibrational dynamics of tetragonal NaBi(WO4)2 scheelite crystal[J]. Vib. Spectrosc., 1996,12(1996):25-36.

    23. [23]

      LIU J H, YILI C R, SUN J, WANG Y W, LI J L, ZHANG L, YU Y Q. Growth of Nd doped NaBi(WO4)2 crystal[J]. Journal of the Chinese Ceramic Society, 2003,31(2):165-168.  

    24. [24]

      LI J L, XU B, LIU J H, LI Y H, LI L, ZHANG L, ZHAO Y. Study on crystal growth parameters for NaBi(WO4)2 single crystal[J]. Journal of Synthetic Crystals, 2001,30(3):250-255.  

    25. [25]

      Shannon R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. J. Appl. Phys., 1993,73(1):348-366. doi: 10.1063/1.353856

    26. [26]

      Zhang G Q, Wang H, Guo J, He L, Wei D D, Yuan Q B. Ultra-low sintering temperature microwave dielectric ceramics based on Na2O-MoO3 binary system[J]. J. Am. Ceram. Soc., 2015,98(2):528-533. doi: 10.1111/jace.13297

    27. [27]

      Feteira A, Sinclair D C. Microwave dielectric properties of low firing temperature Bi2W2O9 ceramics[J]. J. Am. Ceram. Soc., 2008,91(4):1338-1341.

    28. [28]

      Guo B, Liu P, Yang T, Zhang H W. Thermal stable microwave dielectric properties of CdWO4 ceramics prepared by high energy ball milling method[J]. J. Alloy. Compd., 2015,650:777-782.

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

Metrics
  • PDF Downloads(3)
  • Abstract views(388)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return