Citation: Zhi-Hu MA, Yi-Xia REN, Zhi-Xiang WANG, Mei-Li ZHANG, Ji-Jiang WANG. Preparation and characterization of 2D nickel coordination polymer (Ni-CP) and Ag@Ni-CP Schottky junctions for photocatalytic degradation of cationic dyes[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 2009-2019. doi: 10.11862/CJIC.2023.148 shu

Preparation and characterization of 2D nickel coordination polymer (Ni-CP) and Ag@Ni-CP Schottky junctions for photocatalytic degradation of cationic dyes

  • Corresponding author: Yi-Xia REN, renyixia1@163.com
  • Received Date: 1 March 2023
    Revised Date: 10 June 2023

Figures(6)

  • A new 2D nickel (Ⅱ) coordination polymer (Ni - CP) has been synthesized hydrothermally, named as [Ni(DDB)0.5(2, 2'-bipy)(H2O)]·H2O (H4DDB=1, 4-di(3, 5-dicarboylphenoxy) benzene, 2, 2'-bipy=2, 2'-bipyridine), and characterized by element analysis, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Single-crystal structural analysis shows that the coordination polymer possesses a 2D waved network through DDB4- ligand in μ4 fashion. Ag-loaded products (Ag@Ni-CP) with Schottky junction were prepared by the photoreduction method. Photocatalytic degradation performance of Ni-CP and Ag@ Ni-CP were investigated, and the latter exhibited excellent degradation effect, especially for rhodamine B and methylene blue with a high degradation rate of 99% rapidly in 60 min. Ag@Ni-CP exhibited higher and faster degradation performance than the reported MOF catalyst materials. The photocatalytic mechanism was investigated by free radical trapping experiments.
  • 加载中
    1. [1]

      Zhang Y M, Yuan S, Day G, Wang X, Yang X Y, Zhou H C. Luminescent sensors based on metal-organic frameworks[J]. Coord. Chem. Rev., 2018,354:28-45. doi: 10.1016/j.ccr.2017.06.007

    2. [2]

      Pham T, Forrest K A, Space B, Eckert J. Dynamics of H2 adsorbed in porous materials as revealed by computational analysis of inelastic neutron scattering spectra[J]. Phys. Chem. Chem. Phys., 2016,18(26):17141-17158. doi: 10.1039/C6CP01863G

    3. [3]

      Tsivion E, Mason J A, Gonzalez M I, Long J R, Head-Gordon M. A computational study of CH4 storage in porous framework materials with metalated linkers: Connecting the atomistic character of CH4 binding sites to usable capacity[J]. Chem. Sci., 2016,7(7):4503-4518. doi: 10.1039/C6SC00529B

    4. [4]

      Bulgariu L, Escudero L B, Bello O S, Iqbal M, Nisar J, Adegoke K A, Alakhras F, Kornaros M, Anastopoulos I. The utilization of leaf-based adsorbents for dyes removal: A review[J]. J. Mol. Liq., 2019,276:728-747. doi: 10.1016/j.molliq.2018.12.001

    5. [5]

      Zhao Z, Shehzad M A, Wu B, Wang X, Yasmin A, Zhu Y R, Wang X X, He Y B, Ge L, Li X Y, Xu T W. Spray-deposited thin-film composite MOFs membranes for dyes removal[J]. J. Membr. Sci., 2021,635119475. doi: 10.1016/j.memsci.2021.119475

    6. [6]

      Zhao S, Xu J, Mao M, Li L J, Li X H. Protonated g-C3N4 cooperated with Co-MOF doped with Sm to construct 2D/2D heterojunction for integrated dye-sensitized photocatalytic H2 evolution[J]. J. Colloid Interface Sci., 2021,583:435-447. doi: 10.1016/j.jcis.2020.09.063

    7. [7]

      El-Samak A A, Ponnamma D, Hassan M K, Al-Maadeed M A A. A stable porous vessel for photocatalytic degradation of Azocarmine G dye[J]. Microporous Mesoporous Mat., 2022,341111994. doi: 10.1016/j.micromeso.2022.111994

    8. [8]

      Pan L, Muhammad T, Ma L, Huang Z F, Wang S B, Wang L, Zou J J, Zhang X W. MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis[J]. Appl. Catal. B-Environ., 2016,189:181-191. doi: 10.1016/j.apcatb.2016.02.066

    9. [9]

      Zhan W, Sun L, Han X. Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks[J]. Nano-Micro Lett., 2019,11(1)1. doi: 10.1007/s40820-018-0235-z

    10. [10]

      Yang X B, Chen J, Hu J P, Zhao S Y, Zhao J Y, Luo X T. Metal organic framework-derived Zn1-xCox-ZIF@Zn1-xCoxO hybrid photocatalyst with enhanced photocatalytic activity through synergistic effect[J]. Catal. Sci. Technol., 2018,8(2):573-579. doi: 10.1039/C7CY01979C

    11. [11]

      Wang Z J, Ding R, Zhang J, Chen L R, Wang Y, Liu J G, Zou Z G. Biomimetic control of charge transfer in MOFs by solvent coordination for boosting photocatalysis[J]. Chem. Commun., 2022,58(70):9830-9833. doi: 10.1039/D2CC03333J

    12. [12]

      Li Z L, Wang C, Su Z P, Zhang W, Wang N, Mele G, Li J. New porphyrin/Cu(Ⅱ) porphyrin-TiO2 nanohybrids for improved photocatalytic oxidation and reduction activities[J]. Mater. Chem. Phys., 2020,252123228. doi: 10.1016/j.matchemphys.2020.123228

    13. [13]

      Dang C, Zhang Q W, Xu M Z, Ruan X F, Xu P P, Yan J F, Li J. One-pot solvothermal preparation of mesoporous Cu(Ⅱ) porphyrin-TiO2 composites with enhanced photocatalytic activity and stability[J]. Inorg. Nano-Metal Chem., 2017,47:783-787. doi: 10.1080/15533174.2016.1186092

    14. [14]

      Nandi P, Das D. ZnO/CdS/CuS heterostructure: A suitable candidate for applications in visible-light photocatalysis[J]. J. Phys. Chem. Solids, 2022,160110344. doi: 10.1016/j.jpcs.2021.110344

    15. [15]

      Li J K, Shao W F, Geng M, Wan S P, Ou M, Chen Y H. Combined Schottky junction and doping effect in CdxZn1-xS@Au/BiVO4 Z-scheme photocatalyst with boosted carriers charge separation for CO2 reduction by H2O[J]. J. Colloid Interface Sci., 2022,606:1469-1476. doi: 10.1016/j.jcis.2021.08.103

    16. [16]

      Ou M, Li J K, Chen Y Z, Wan S P, Zhao S L, Wang J, Wu Y P, Ye C C, Chen Y H. Formation of noble-metal-free 2D/2D ZnmIn2Sm+3 (m=1, 2, 3)/MXene Schottky heterojunction as an efficient photocatalyst for hydrogen evolution[J]. Chem. Eng. J., 2021,424130170. doi: 10.1016/j.cej.2021.130170

    17. [17]

      Im J K, Sohn E J, Kim S, Jang M, Son A, Zoh K D, Yoon Y. Review of MXene-based nanocomposites for photocatalysis[J]. Chemosphere, 2021,270129478. doi: 10.1016/j.chemosphere.2020.129478

    18. [18]

      Cai T, Wang L L, Liu Y T, Zhang S Q, Dong W Y, Chen H, Yi X Y, Yuan J L, Xia X N, Liu C B, Luo S L. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance[J]. Appl. Catal. B-Environ., 2018,239:545-554. doi: 10.1016/j.apcatb.2018.08.053

    19. [19]

      Wang D J, Xue G L, Zhen Y Z, Fu F, Li D S. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities[J]. J. Mater. Chem., 2012,22(11):4751-4758. doi: 10.1039/c2jm14448d

    20. [20]

      Chen X, Zhang Y S, Kong X Y, Yao K, Liu L Z, Zhang J L, Guo Z R, Xu W Y, Fang Z L, Liu Y X. Photocatalytic performance of the MOF-coating layer on SPR-excited Ag nanowires[J]. ACS Omega, 2021,6(4):2882-2889. doi: 10.1021/acsomega.0c05229

    21. [21]

      Berdakin M, Soldano G, Bonafé F P, Liubov V, Aradi B, Frauenheim T, Sánchez C G. Dynamical evolution of the Schottky barrier as a determinant contribution to electron-hole pair stabilization and photocatalysis of plasmon-induced hot carriers[J]. Nanoscale, 2022,14(7):2816-2825. doi: 10.1039/D1NR04699C

    22. [22]

      Xu X Y, Wang Z Y, Qiao W, Luo F T, Hu J G, Wang D H, Zhou Y. Refined Z-scheme charge transfer in facet-selective BiVO4/Au/CdS heterostructure for solar overall water splitting[J]. Int. J. Hydrog. Energy, 2021,46(12):8531-8538. doi: 10.1016/j.ijhydene.2020.12.047

    23. [23]

      Sahu P, Das D. Two-step visible light photocatalytic dye degradation phenomena in Ag2O-impregnated ZnO nanorods via growth of metallic Ag and formation of ZnO/Ag0/Ag2O heterojunction structures[J]. Langmuir, 2022,38(15):4503-4520. doi: 10.1021/acs.langmuir.1c02860

    24. [24]

      Wang B, Zhao J Z, Chen H L, Weng Y X, Tang H, Chen Z R, Zhu W S, She Y B, Xia J X, Li H M. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2021,293120182. doi: 10.1016/j.apcatb.2021.120182

    25. [25]

      Xu X Y, Zhang J, Zhao X D, Fu H F, Chu C, Wang P, Wang C C. Visible-light-triggered release of sulfonamides in MOF/Ag-based nanoparticle composites: Performance, mechanism, and DFT calculations[J]. ACS Appl. Energy Mater., 2019,2(1):418-428.

    26. [26]

      Ma H Y, Liu Y, Xiong R, Wei J H. Hetero-structured ZnIn2S4-NiO@MOF photo-catalysts for efficient hydrogen evolution[J]. Chin. Chem. Lett., 2022,33(2):1042-1046. doi: 10.1016/j.cclet.2021.08.048

    27. [27]

      Liu M T, Li J Y, Bian R M, Wang X Y, Ji Y H, Zhang X L, Tian J, Shi F, Cui H Z. ZnO@Ti3C2 MXene interfacial Schottky junction for boosting spatial charge separation in photocatalytic degradation[J]. J. Alloy. Compd., 2022,905164025. doi: 10.1016/j.jallcom.2022.164025

    28. [28]

      Ye F, Li H F, Yu H T, Chen S, Quan X. Constructing BiVO4-Au@CdS photocatalyst with energic charge-carrier-separation capacity derived from facet induction and Z-scheme bridge for degradation of organic pollutants[J]. Appl. Catal. B-Environ., 2018,227:258-265. doi: 10.1016/j.apcatb.2017.12.020

    29. [29]

      LI Y F, WU L Z, LI Y L, LI R, HE P, ZHANG L, ZHANG Y K, LEI J H, DUAN T. Construction of type-Ⅱ TiO2/g-C3N4 heterojunction promoting efficient photocatalytic reduction of U(Ⅵ)[J]. Chinese J. Inorg. Chem., 2023,39(4):689-698. doi: 10.11862/CJIC.2023.029

    30. [30]

      HUANG Z Y, ZHENG Y F, YANG E, SONG X C. Preparation and photocatalytic performance of BiOIO3/BiOCl heterojunction with dominated facet[J]. Chinese J. Inorg. Chem., 2023,39(2):263-271. doi: 10.11862/CJIC.2022.279

    31. [31]

      LIU F Q, WANG L M, FAN D, XU L H, PAN H. Preparation and photocatalytic properties of TiO2/Cu2O/Pt composite hollow microspheres[J]. Chinese J. Inorg. Chem., 2023,39(2):300-308. doi: 10.11862/CJIC.2022.251

    32. [32]

      Cui J W, Hou S X, Li Y H, Cui G H. A multifunctional Ni(Ⅱ) coordination polymer: Synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst[J]. Dalton Trans., 2017,46(48):16911-16924. doi: 10.1039/C7DT03874G

    33. [33]

      Zaman F U, Xie B, Zhang J Y, Gong T Y, Cui K, Hou L R, Xu J L, Zhai Z R, Yuan C Z. Nanomaterials, 2021, 11(12): 3239  doi: 10.3390/nano11123239

    34. [34]

      Padmini M, Balaganapathi T, Thilakan P. Rutile-TiO2: Post heat treatment and its influence on the photocatalytic degradation of MB dye[J]. Ceram. Int., 2022,48(12):16685-16694. doi: 10.1016/j.ceramint.2022.02.217

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    20. [20]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

Metrics
  • PDF Downloads(3)
  • Abstract views(292)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return