Citation: Yan-Rui LEI, Hai-Lang ZHU, Jie HUANG, Ren-He ZHOU, Tao LIU. Structure and magnetism of cyanide-bridged [FeCo]-based chain-like complexes[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1969-1979. doi: 10.11862/CJIC.2023.147 shu

Structure and magnetism of cyanide-bridged [FeCo]-based chain-like complexes

  • Corresponding author: Tao LIU, liutao@dlut.edu.cn
  • Received Date: 28 March 2023
    Revised Date: 5 June 2023

Figures(7)

  • We report two cyanide-bridged mixed-valence chain-like coordination polymers by the self-assembly reaction of tricyanoferrate(Ⅲ) building blocks (Bu4N)[Fe(PzTp)(CN)3] (PzTp=tetrakis(pyrazolyl)borate) and Co(Ⅱ) ions in the presence of monodentate ligand (E)-1-styryl-1H-imidazole (Bzi). X-ray diffraction analysis indicated that complex [Fe(PzTp)(CN)3]2[Co(Bzi)4]2(ClO4)2·H2O (1) adopts a square-wave type chain structure, while complex [Fe(PzTp) (CN)3]2[Co(Bzi)2]·CH3OH (2) forms double zigzag chains that contain methanol solvent molecules. Magnetic studies revealed that complex 1 displayed a thermally induced spin transition at around 360 K, while complex 2 exhibited a solvent-induced two-step spin transition at approximately 200 K. Variable-temperature infrared spectra confirmed the thermally induced intermetallic charge transfer behavior. Additionally, photomagnetic experiments revealed that complex 1 displayed reversible light-induced charge transfer behavior when alternately irradiated with 808 and 532 nm light, while the charge transfer behavior of complex 2 could be induced by 808 nm irradiation. The magneto-structural relationship analysis indicates that the different hydrogen bonding interactions and local coordination environments of the cobalt sites in complexes 1 and 2 are the main factors contributing to their distinct charge transfer and light-responsive properties.
  • 加载中
    1. [1]

      Sato O, Iyoda T, Fujishima A, Hashimoto K. Photoinduced magnetization of a cobalt-iron cyanide[J]. Science, 1996,272(5262):704-705. doi: 10.1126/science.272.5262.704

    2. [2]

      Cambi L, Szegö L. Über die magnetische Susceptibilität der komplexen Verbindungen[J]. Berichte der deutschen chemischen Gesellschaft (Reihe A und B), 1931,64(10):2591-2598. doi: 10.1002/cber.19310641002

    3. [3]

      Wang M, Li Z Y, Ishikawa R, Yamashita M. Spin crossover and valence tautomerism conductors[J]. Coord. Chem. Rev., 2021,435213819. doi: 10.1016/j.ccr.2021.213819

    4. [4]

      Wang J H, Li Z Y, Yamashita M, Bu X H. Recent progress on cyanobridged transition-metal-based single-molecule magnets and singlechain magnets[J]. Coord. Chem. Rev., 2021,428213617. doi: 10.1016/j.ccr.2020.213617

    5. [5]

      Hu J X, Luo L, Lv X J, Liu L, Liu Q, Yang Y K, Duan C Y, Luo Y, Liu T. Light-induced bidirectional metal-to-metal charge transfer in a linear Fe2Co complex[J]. Angew. Chem. Int. Ed., 2017,56(26):7663-7668. doi: 10.1002/anie.201703768

    6. [6]

      Phonsri W, Harding P, Liu L J, Telfer S G, Murray K S, Moubaraki B, Ross T M, Jameson G N L, Harding D J. Solvent modified spin crossover in an iron(Ⅲ) complex: Phase changes and an exceptionally wide hysteresis[J]. Chem. Sci., 2017,8(5):3949-3959. doi: 10.1039/C6SC05317C

    7. [7]

      Chen X Y, Shi H Y, Huang R B, Zheng L S, Tao J. Temperature, light and solvent-induced spin transition in a 3D 2-fold interpenetrated PtStype porous coordination polymer[J]. Chem. Commun., 2013,49(93):10977-10979. doi: 10.1039/c3cc45691a

    8. [8]

      Nihei M, Sekine Y, Suganami N, Nakazawa K, Nakao A, Nakao H, Murakami Y, Oshio H. Controlled intramolecular electron transfers in cyanide- bridged molecular squares by chemical modifications and external stimuli[J]. J. Am. Chem. Soc., 2011,133(10):3592-3600. doi: 10.1021/ja109721w

    9. [9]

      Lescouëzec R, Toma L M, Vaissermann J, Verdaguer M, Delgado F S, Ruiz- Pérez C, Lloret F, Julve M. Design of single chain magnets through cyanide- bearing six- coordinate complexes[J]. Coord. Chem. Rev., 2005,249(23):2691-2729. doi: 10.1016/j.ccr.2005.09.017

    10. [10]

      Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A. Spin crossover nanomaterials: From fundamental concepts to devices[J]. Adv. Mater., 2018,30(5)1703862. doi: 10.1002/adma.201703862

    11. [11]

      Zlobin I S, Nelyubina Y V, Novikov V V. Molecular compounds in spintronic devices: An intricate marriage of chemistry and physics[J]. Inorg. Chem., 2022,61(33):12919-12930. doi: 10.1021/acs.inorgchem.2c00859

    12. [12]

      Kipgen L, Bernien M, Tuczek F, Kuch W. Spin-crossover molecules on surfaces: From isolated molecules to ultrathin films[J]. Adv. Mater., 2021,33(24)2008141. doi: 10.1002/adma.202008141

    13. [13]

      HE Y L, MENG Y S, SUN H Y, JIANG W J, JIAO C Q, LIU T. Synthesis and magnetism of cyano-bridged Fe2Ni double-zigzag chains[J]. Chinese J. Inorg. Chem., 2019,35(9):1570-1578.  

    14. [14]

      Jiao C Q, Meng Y S, Yu Y, Jiang W J, Wen W, Oshio H, Luo Y, Duan C Y, Liu T. Effect of intermolecular interactions on metal-to-metal charge transfer: A combined experimental and theoretical investigation[J]. Angew. Chem. Int. Ed., 2019,58(47):17009-17015. doi: 10.1002/anie.201909495

    15. [15]

      WANG J L, ZHU H L, LIU Q, DUAN C Y, LIU T. The properties of light- induced single- chain magnets and its research progress[J]. Scientia Sinica Chimica, 2017,47(6):724-733.  

    16. [16]

      Wei R J, Nakahara R, Cameron J M, Newton G N, Shiga T, Sagayama H, Kumai R, Murakami Y, Oshio H. Solvent-induced on/off switching of intramolecular electron transfer in a cyanide-bridged trigonal bipyramidal complex[J]. Dalton Trans., 2016,45(43):17104-17107. doi: 10.1039/C6DT03416K

    17. [17]

      WU J Q, MENG Y S, ZHU H L, JIAO C Q, LIU T. Synthesis and magnetism of cyano-bridged Fe2Ni2 single-molecule magnets[J]. Chinese J. Inorg. Chem., 2020,36(12):2331-2339.  

    18. [18]

      Sato O. Optically switchable molecular solids: Photoinduced spin- crossover, photochromism, and photoinduced magnetization[J]. Acc. Chem. Res., 2003,36(9):692-700. doi: 10.1021/ar020242z

    19. [19]

      Aguilà D, Prado Y, Koumousi E S, Mathonière C, Clérac R. Switchable Fe/Co Prussian blue networks and molecular analogues[J]. Chem. Soc. Rev., 2016,45(1):203-224. doi: 10.1039/C5CS00321K

    20. [20]

      Verdaguer M, Bleuzen A, Marvaud V, Vaissermann J, Seuleiman M, Desplanches C, Scuiller A, Train C, Garde R, Gelly G, Lomenech C, Rosenman I, Veillet P, Cartier C, Villain F. Molecules to build solids: High TC molecule-based magnets by design and recent revival of cyano complexes chemistry[J]. Coord. Chem. Rev., 1999,190-192:1023-1047. doi: 10.1016/S0010-8545(99)00156-3

    21. [21]

      Yang Y K, Jiao C Q, Meng Y S, Yao N T, Jiang W J, Liu T. Substituent effect on metal- to- metal charge transfer behavior of cyanide- bridged {Fe2Co2} square[J]. Inorg. Chem. Commun., 2021,130108712. doi: 10.1016/j.inoche.2021.108712

    22. [22]

      Kamilya S, Ghosh S, Li Y, Dechambenoit P, Rouzières M, Lescouëzec R, Mehta S, Mondal A. Two-step thermoinduced metal-to-metal electron transfer and ON/OFF photoswitching in a molecular [Fe2Co2] square complex[J]. Inorg. Chem., 2020,59(17):11879-11888. doi: 10.1021/acs.inorgchem.0c02053

    23. [23]

      Jiang W J, Jiao C Q, Meng Y S, Zhao L, Liu Q, Liu T. Switching single chain magnet behavior via photoinduced bidirectional metal- to-metal charge transfer[J]. Chem. Sci., 2018,9(3):617-622. doi: 10.1039/C7SC03401F

    24. [24]

      Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality[J]. Coord. Chem. Rev., 2022,453214274. doi: 10.1016/j.ccr.2021.214274

    25. [25]

      Gütlich P, Garcia Y, Woike T. Photoswitchable coordination compounds[J]. Coord. Chem. Rev., 2001,219-221:839-879. doi: 10.1016/S0010-8545(01)00381-2

    26. [26]

      Hoshino N, Iijima F, Newton G N, Yoshida N, Shiga T, Nojiri H, Nakao A, Kumai R, Murakami Y, Oshio H. Three-way switching in a cyanide-bridged [CoFe] chain[J]. Nat. Chem., 2012,4(11):921-926. doi: 10.1038/nchem.1455

    27. [27]

      Meng L Y, Deng Y F, Holmes S M, Zhang Y Z. Thermo- and photoinduced electron transfer in a series of [Fe2Co2] capsules[J]. Dalton Trans., 2023,52(6):1616-1622. doi: 10.1039/D2DT03328C

    28. [28]

      Liu Q, Hu J X, Meng Y S, Jiang W J, Wang J L, Wen W, Wu Q, Zhu H L, Zhao L, Liu T. Asymmetric coordination toward a photoinduced single- chain magnet showing high coercivity values[J]. Angew. Chem. Int. Ed., 2021,60(19):10537-10541. doi: 10.1002/anie.202017249

    29. [29]

      Liu Q, Yao N T, Sun H Y, Hu J X, Meng Y S, Liu T. Light actuated single- chain magnet with magnetic coercivity[J]. Inorg. Chem. Front., 2022,9(19):5093-5104. doi: 10.1039/D2QI01371A

    30. [30]

      Dobbelaar E, Jakobsen V B, Trzop E, Lee M, Chikara S, Ding X, Müller Bunz H, Esien K, Felton S, Carpenter M A, Collet E, Morgan G G, Zapf V S. Thermal and magnetic field switching in a two-step hysteretic Mn spin crossover compound coupled to symmetry breakings[J]. Angew. Chem. Int. Ed., 2022,61e202114021. doi: 10.1002/anie.202114021

    31. [31]

      Huang X D, Wen G H, Bao S S, Jia J G, Zheng L M. Thermo- and light-triggered reversible interconversion of dysprosium-anthracene complexes and their responsive optical, magnetic and dielectric properties[J]. Chem. Sci., 2021,12(3):929-937. doi: 10.1039/D0SC04851H

    32. [32]

      JIAO C Q, JIANG W J, WEN W, ZREN Y, WANG J L. LIU T, HE C. Tuning assembly and magnetic interactions of cyano-bridged Fe(Ⅲ)- Mn(Ⅱ) bimetallic chains[J]. Chinese J. Inorg. Chem., 2016,32(9):1637-1646.  

    33. [33]

      Habarakada U, Boonprab T, Harding P, Murray K S, Phonsri W, Neville S M, Ahmed M, Harding D J. Solvent effects on the structural and magnetic properties of Fe spin- crossover complexes[J]. Cryst Growth Des., 2022,22(8):4895-4905. doi: 10.1021/acs.cgd.2c00390

    34. [34]

      Díaz- Torres R, Boonprab T, Gómez- Coca S, Ruiz E, Chastanet G, Harding P, Harding D J. Structural and theoretical insights into solvent effects in an iron(Ⅲ) SCO complex[J]. Inorg. Chem. Front., 2022,9(20):5317-5326. doi: 10.1039/D2QI01159J

    35. [35]

      Zhao X H, Shao D, Chen J T, Gan D X, Yang J, Zhang Y Z. A trinu- clear {Fe2Fe} complex involving both spin and non- spin transitions exhibits three- step and wide thermal hysteresis[J]. Sci. China Chem., 2022,65(3):532-538. doi: 10.1007/s11426-021-1153-0

    36. [36]

      Shen G D, Lv X, Qian W X, Bao W L. Cu2O-catalyzed Ullmann-type reaction of vinyl bromides with imidazole and benzimidazole[J]. Tetrahedron Lett., 2008,49(29/30):4556-4559.

    37. [37]

      Gu Z G, Liu W, Yang Q F, Zhou X H, Zuo J L, You X Z. Cyano-bridged Fe2Cu3 and Fe4Ni4 complexes: Syntheses, structures, and magnetic properties[J]. Inorg. Chem., 2007,46(8):3236-3244. doi: 10.1021/ic062267q

  • 加载中
    1. [1]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    2. [2]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    11. [11]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    12. [12]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    13. [13]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    14. [14]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    15. [15]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    16. [16]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    17. [17]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    18. [18]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    19. [19]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    20. [20]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

Metrics
  • PDF Downloads(1)
  • Abstract views(255)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return