Citation: Shi-Xiong LI, Yu-Huan CHEN, Shao-Long YANG, Mu-Lun YAN, Cheng-Ting WEI. Synthesis, structure and fluorescence analysis of three Zn(Ⅱ) complexes based on (1-methyl-1H-benzimidazol-2-yl) methanol[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1782-1790. doi: 10.11862/CJIC.2023.146 shu

Synthesis, structure and fluorescence analysis of three Zn(Ⅱ) complexes based on (1-methyl-1H-benzimidazol-2-yl) methanol

  • Corresponding author: Shi-Xiong LI, lsx1324@163.com
  • Received Date: 25 March 2023
    Revised Date: 6 June 2023

Figures(7)

  • The (1-methyl-1H-benzimidazol-2-yl) methanol (HL) reacted with Zn(NO3)2·6H2O and ZnCl2 in a mixture of methanol and acetonitrile to generate three Zn(Ⅱ) complexes: [Zn(HL)2Cl2] (1), [Zn(HL)2(H2O)2](NO3)2 (2), and [Zn4(L)4Cl4] (3). Their structures were analyzed by elemental analysis, IR, thermogravimetry, and single-crystal X-ray diffraction. The results show that 1 and 2 are mononuclear complexes, and 3 is a tetranuclear complex. The thermogravimetric analysis results show that these complexes had good thermal stability and the structure began to decompose when the temperature exceeded 180 ℃. The fluorescence analysis shows that complexes 1 and 2 had a red shift phenomenon, and when the ligand lost proton H, complex 3 had a significant blue shift phenomenon. The quantum yields of complexes 1, 2, and 3 were 1.00%, 0.78%, and 2.04%, respectively. And the fluorescence lifetimes were 2.306 0, 2.283 6, and 3.039 9 ns, respectively. Therefore, it is possible to enhance the fluorescence lifetime by causing the ligand to lose proton H and form a polynuclear complex.
  • 加载中
    1. [1]

      Imberti C, Zhang P, Huang H, Sadler P J. New designs for phototherapeutic transition metal complexes[J]. Angew. Chem. Int. Ed., 2020,59(1):61-73. doi: 10.1002/anie.201905171

    2. [2]

      Dalle K E, Warnan J, Leung J J, Reuillard B, Karmel I S, Reisner E. Electro-and solar-driven fuel synthesis with first row transition metal complexes[J]. Chem. Rev., 2019,119(4):2752-2875. doi: 10.1021/acs.chemrev.8b00392

    3. [3]

      Li J X, Xiong L Y, Fu L L, Bo W B, Du Z X, Feng X. Structural diversity of Mn(Ⅱ) and Cu(Ⅱ) complexes based on 2-carboxyphenoxyacetate linker: Syntheses, conformation comparison and magnetic properties[J]. J. Solid State Chem., 2022,305122636. doi: 10.1016/j.jssc.2021.122636

    4. [4]

      Liao B L, Li S X. Multifunctional Mn(Ⅱ) metal-organic framework for photocatalytic aerobic oxidation and C—H direct trifluoromethylation[J]. J. Catal., 2022,414:294-301. doi: 10.1016/j.jcat.2022.09.021

    5. [5]

      Li S X, Qiang J W, Lu L, Yang S L, Chen Y F, Liao B L. In situ synthesis mechanism and photocatalytic performance of cyano-bridged Cu?/Cu(Ⅱ) ultrathin nanosheets[J]. Front. Chem., 2022,10911238. doi: 10.3389/fchem.2022.911238

    6. [6]

      Li J X, Zhang Y H, Du Z X, Feng X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: Structural analyses, conformation alteration and magnetic properties[J]. Inorg. Chim. Acta, 2022,530120697. doi: 10.1016/j.ica.2021.120697

    7. [7]

      Li S X, Liu L M, Deng Y, Huang Y H, Chen Y F, Liao B L. Terminal anion induced zinc(Ⅱ) mononuclear complexes trans-to-cis isomerization regulate photoluminescence properties and its solution behavior[J]. Polyhedron, 2019,174114158. doi: 10.1016/j.poly.2019.114158

    8. [8]

      Hossain A M S, Méndez-Arriaga J M, Xia C, Xie J, Gómez-Ruiz S. Metal complexes with ONS donor Schiff bases: A review[J]. Polyhedron, 2022,217115692. doi: 10.1016/j.poly.2022.115692

    9. [9]

      Li S X, Yang S L, Liang G C, Yan M L, Wei C T, Lu Y. Regulation and photocatalytic degradation mechanism of a hydroxyl modified UiO-66 type metal organic framework[J]. RSC Adv., 2023,13(8):5273-5282. doi: 10.1039/D3RA00004D

    10. [10]

      LI S X, FENG A Q, HU Y, LIANG G C, LU L F, LU H P. Two-dimensional copper-based coordination polymer: Synthesis, structure and ion effect on adsorption of Cr(Ⅵ)[J]. Chinese J. Inorg. Chem., 2022,38(5):941-950.  

    11. [11]

      Xu Z, Zhang Q R, Li X C, Huang X F. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods[J]. Chem. Eng. J., 2022,429131688. doi: 10.1016/j.cej.2021.131688

    12. [12]

      Qiang J W, Deng D S, Yu Y, Wang T M, Zhong X, Liao S, Li S X. Reductant-optimized exchange strategy to construct the water-resistant shell of Mn4+-doped phosphors[J]. Appl. Sur. Sci., 2022,604154461. doi: 10.1016/j.apsusc.2022.154461

    13. [13]

      Qiang J W, Wang L, Wang T M, Yu Y, Deng D S, Wu C X, Liao S, Li S X. Improvement of the luminescent thermal stability and water resistance of K2SiF6: Mn4+ by surface passivation[J]. Ceram. Int., 2022,48(12):17253-17260. doi: 10.1016/j.ceramint.2022.02.285

    14. [14]

      Zhao Z Y, Shen X, Li H, Liu K, Wu H Y, Li X G, Gao X. Watching microwave-induced microscopic hot spots via the thermosensitive fluorescence of europium/terbium mixed-metal organic complexes[J]. Angew. Chem. Int. Ed., 2022,134(6)e202114340. doi: 10.1002/ange.202114340

    15. [15]

      Ruduss A, Turovska B, Belyakov S, Stucere K A, Vembris A, Traskovskis K. Carbene-metal complexes as molecular scaffolds for construction of through-space thermally activated delayed fluorescence emitters[J]. Inorg. Chem., 2022,61(4):2174-2185. doi: 10.1021/acs.inorgchem.1c03371

    16. [16]

      Kargar H, Ashfaq M, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar K S, Tahir M N. Synthesis, crystal structure, spectral characterization, theoretical and computational studies of Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) complexes incorporating Schiff base ligand derived from 4-(diethylamino) salicylaldehyde[J]. Inorg. Chim. Acta, 2022,536120878. doi: 10.1016/j.ica.2022.120878

    17. [17]

      Sun Y X, Zhang W Z, Li J, Zhang Y, Dong W K. Structural insights into three novel Cu(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) complexes derived of a pyridine-containing N4-cavity bisoxime ligand[J]. Inorg. Chim. Acta, 2022,531120723. doi: 10.1016/j.ica.2021.120723

    18. [18]

      Buvaylo E A, Nesterova O V, Goreshnik E A, Vyshniakova H V, Petrusenko S R, Nesterov D S. Supramolecular diversity, theoretical investigation and antibacterial activity of Cu, Co and Cd complexes based on the tridentate N, N, O-Schiff base ligand formed in situ[J]. Molecules, 2022,27(23)8233. doi: 10.3390/molecules27238233

    19. [19]

      Altay A, Caglar S, Caglar B. Silver? complexes containing diclofenac and niflumic acid induce apoptosis in human-derived cancer cell lines[J]. Arch. Phy. Biochem., 2022,128(1):69-79. doi: 10.1080/13813455.2019.1662454

    20. [20]

      Kumar S, Jain S, Nehra M, Dilbaghi N, Marrazza G, Kim K H. Green synthesis of metal-organic frameworks: A state-of-the-art review of potential environmental and medical applications[J]. Coord. Chem. Rev., 2020,420213407. doi: 10.1016/j.ccr.2020.213407

    21. [21]

      Ismael M, Abdel-Mawgoud A M M, Rabia M K, Abdou A. Design and synthesis of three Fe? mixed-ligand complexes: Exploration of their biological and phenoxazinone synthase-like activities[J]. Inorg. Chim. Acta, 2020,505119443. doi: 10.1016/j.ica.2020.119443

    22. [22]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallorg., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    23. [23]

      ZHANG C H, WANG Y, TANG H J, DENG Y F, CHEN M S. Syntheses, crystal structures and properties of two Zn(Ⅱ) complexes constructed from flexible 1, 5-bis (imidazol-2-methyl) pentane ligand[J]. Chinese J. Inorg. Chem., 2020,36(11):2197-2204.

    24. [24]

      Kumar N, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(Ⅱ)-complexes[J]. Coord. Chem. Rev., 2021,427213550. doi: 10.1016/j.ccr.2020.213550

    25. [25]

      Liuzzo V, Oberhauser W, Pucci A. Synthesis of new red photoluminescent Zn(Ⅱ)-salicylaldiminato complex[J]. Inorg. Chem. Commun., 2010,13(5):686-688. doi: 10.1016/j.inoche.2010.03.020

    26. [26]

      Liu X X, Liu Y H, Feng S S, Lu L P. Two luminescent Zn(Ⅱ) coordination complexes as fluorescence-responsive sensors for efficient detection of Cu2+ ions[J]. J. Mol. Struct., 2023,1274134570. doi: 10.1016/j.molstruc.2022.134570

    27. [27]

      Yi L, Zhu L N, Ding B, Cheng P, Liao D Z, Yan S P, Jiang Z H. Six- and four-coordinated zinc(Ⅱ) complexes exhibit strong blue fluorescent properties[J]. Inorg. Chem. Commun., 2003,6(9):1209-1212. doi: 10.1016/S1387-7003(03)00224-7

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    10. [10]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    11. [11]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    12. [12]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    13. [13]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    16. [16]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    17. [17]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    18. [18]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    19. [19]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    20. [20]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

Metrics
  • PDF Downloads(2)
  • Abstract views(335)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return