Citation: Jin-Yang MA, Ya-Nan XU, Yu ZHANG, Hong-Bin DU. Preparation of SiOx-C composite materials with a reinforced concrete-like structure for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1766-1774. doi: 10.11862/CJIC.2023.144 shu

Preparation of SiOx-C composite materials with a reinforced concrete-like structure for lithium-ion batteries

  • Corresponding author: Hong-Bin DU, hbdu@nju.edu.cn
  • Received Date: 20 April 2023
    Revised Date: 8 July 2023

Figures(6)

  • This work reports a simple method to prepare a Si-O-C anode material with a reinforced concrete-like structure, in which carbon nanotubes (CNTs) were embedded and acted like steel bars to provide stress support, and the silicon atoms were wrapped with atomically dispersed carbon and oxygen concrete matrix. An outermost carbon layer was plated via chemical vapor deposition to further inhibit the volume change of the material. Thanks to the unique structural design, the prepared CNTs/SiOx-C/C anode showed excellent electrochemical performance with a high-capacity retention rate of 80% after 970 cycles at 0.5 A·g-1.
  • 加载中
    1. [1]

      Li Y Z, Yan K, Lee H W, Lu Z D, Liu N, Cui Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nat. Energy, 2016,1(2)15029. doi: 10.1038/nenergy.2015.29

    2. [2]

      Zhang H, Zong P, Chen M, Jin H, Bai Y, Li S W, Ma F, Xu H, Lian K. In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries[J]. ACS Nano, 2019,13(3):3054-3062. doi: 10.1021/acsnano.8b08088

    3. [3]

      Yang W, Liu H, Ren Z H, Jian N, Gao M X, Wu Y J, Liu Y F, Pan H G. A novel multielement, multiphase, and B-containing SiOx composite as a stable anode material for Li-ion batteries[J]. Adv. Mater. Interfaces, 2019,6(5)1801631. doi: 10.1002/admi.201801631

    4. [4]

      Shi L R, Pang C L, Chen S L, Wang M H, Wang K X, Tan Z J, Gao P, Ren J G, Huang Y Y, Peng H L, Liu Z F. Vertical graphene gowth on SiO microparticles for stable lithium ion battery anodes[J]. Nano Lett., 2017,17(6):3681-3687. doi: 10.1021/acs.nanolett.7b00906

    5. [5]

      Tang C J, Liu Y N, Xu C, Zhu J X, Wei X J, Zhou L, He L, Yang W, Mai L Q. Ultrafine nickel-nanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage[J]. Adv. Funct. Mater., 2018,28(3)1704561. doi: 10.1002/adfm.201704561

    6. [6]

      Zhou N, Wu Y F, Zhou Q, Li Y R, Liu S H, Zhang H B, Zhou Z, Xia M. Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2(B)[J]. Appl. Surf. Sci., 2019,486:292-302. doi: 10.1016/j.apsusc.2019.05.025

    7. [7]

      Li G, Li J Y, Yue F S, Xu Q, Zuo T T, Yin Y X, Guo Y G. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries[J]. Nano Energy, 2019,60:485-492. doi: 10.1016/j.nanoen.2019.03.077

    8. [8]

      Yang J P, Wang Y X, Li W, Wang L J, Fan Y C, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu H K, Dou S X, Zhao D Y. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage[J]. Adv. Mater., 2017,29(48)1700523. doi: 10.1002/adma.201700523

    9. [9]

      Ma T Y, Xu H Y, Yu X G, Li H Y, Zhang W G, Cheng X L, Zhu W T, Qiu X P. Lithiation behavior of coaxial hollow nanocables of carbonsilicon composite[J]. ACS Nano, 2019,13(2):2274-2280.

    10. [10]

      Sun L, Su T T, Xu L, Liu M P, Du H B. Two-dimensional ultra-thin SiOx (0<x<2) nanosheets with long-term cycling stability as lithium ion battery anodes[J]. Chem. Commun., 2016,52(23):4341-4344. doi: 10.1039/C6CC00723F

    11. [11]

      Zhou X M, Liu Y, Ren Y, Mu T S, Yin X C, Du C Y, Huo H, Cheng X Q, Zuo P J, Yin G P. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithiumion batteries[J]. Adv. Funct. Mater., 2021,31(21)2101145. doi: 10.1002/adfm.202101145

    12. [12]

      Chen R X, Zhou Y C, Li X D. Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium-sulfur batteries[J]. Nano Lett., 2022,22(3):1217-1224. doi: 10.1021/acs.nanolett.1c04380

    13. [13]

      Zeng Y X, Zhang X Y, Qin R F, Liu X Q, Fang P P, Zheng D Z, Tong Y X, Lu X H. Dendrite-free zinc deposition induced by multi-functional CNT frameworks for stable flexible Zn-ion batteries[J]. Adv. Mater., 2019,31(36)e1903675. doi: 10.1002/adma.201903675

    14. [14]

      Zhang Y P, Wang L L, Xu H, Gao J M, Chen D, Han W. 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries[J]. Adv. Funct. Mater., 2020,30(12)1909372. doi: 10.1002/adfm.201909372

    15. [15]

      Xu Q, Sun J K, Li G, Li J Y, Yin Y X, Guo Y G. Facile synthesis of a SiOx/asphalt membrane for high performance lithium-ion battery anodes[J]. Chem. Commun., 2017,53(89):12080-12083. doi: 10.1039/C7CC05816K

    16. [16]

      Guo X T, Li W T, Geng P B, Zhang Q Y, Pang H, Xu Q. Construction of SiOx/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage[J]. J. Colloid Interf. Sci., 2022,606(1):784-792.

    17. [17]

      Chen X C, Kierzek K, Jiang Z W, Chen H M, Tang T, Wojtoniszak M, Kalenczuk R J, Chu P K, Borowiak-Palen E. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter[J]. J. Phys. Chem. C, 2011,115(36):17717-17724. doi: 10.1021/jp205257u

    18. [18]

      Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2007,9(11):1276-1291. doi: 10.1039/B613962K

    19. [19]

      Sasikala S P, Henry L, Yesilbag Tonga G, Huang K, Das R, Giroire B, Marre S, Rotello V M, Penicaud A, Poulin P, Aymonier C. High yield synthesis of aspect ratio controlled graphenic materials from anthracite coal in supercritical fluids[J]. ACS Nano, 2016,10(5):5293-5303. doi: 10.1021/acsnano.6b01298

    20. [20]

      Lim K, Park H, Ha J, Kim Y T, Choi J. Dualcarbon-confined hydrangea-like SiO cluster for high-performance and stable lithium ion batteries[J]. J. Ind. Eng. Chem., 2021,101:397-404. doi: 10.1016/j.jiec.2021.05.043

    21. [21]

      Guo L, He H, Ren Y, Wang C, Li M. Core-shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries[J]. Chem. Eng. J., 2018,335:32-40. doi: 10.1016/j.cej.2017.10.145

    22. [22]

      Kim S J, Kim M C, Han S B, Lee G H, Choe H S, Moon S H, Kwak D H, Hong S, Park K W. 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries[J]. J. Ind. Eng. Chem., 2017,49:105-111. doi: 10.1016/j.jiec.2017.01.014

    23. [23]

      Jang J Y, Kang I, Choi J K, Jeong H, Yi K W, Hong J Y, Lee M. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angew. Chem. Int. Ed., 2020,59(34):14473-14480. doi: 10.1002/anie.202002411

    24. [24]

      Raza A, Jung J Y, Lee C H, Kim B G, Choi J H, Park M S, Lee S M. Swelling-controlled double-layered SiOx/Mg2SiO4/SiOx composite with enhanced initial coulombic efficiency for lithium-ion battery[J]. ACS Appl. Mater. Inter., 2021,13(6):7161-7170. doi: 10.1021/acsami.0c19975

    25. [25]

      Wang C, Wu H, Chen Z, McDowell M T, Cui Y, Bao Z N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nat. Chem., 2013,5(12):1042-1048. doi: 10.1038/nchem.1802

    26. [26]

      Tokur M, Jin M Y, Sheldon B W, Akbulut H. Stress bearing mechanism of reduced graphene oxide in silicon-based composite anodes for lithium ion batteries[J]. ACS Appl. Mater. Inter., 2020,12(30):33855-33869. doi: 10.1021/acsami.0c10064

    27. [27]

      Ian B, Ji W. Asymmetric membranes containing micron-size silicon for high performance lithium ion battery anode[J]. Electrochim. Acta, 2016,213:46-54. doi: 10.1016/j.electacta.2016.07.106

    28. [28]

      Shi H B, Shao G Q, Wu B B, Yang Z X, Zhang H G, Lv P P, Zhu Q S. Scalable synthesis of a dual-confined SiO/one-dimensional carbon/amorphous carbon anode based on heterogeneous carbon structure evolution[J]. J. Mater. Chem. A, 2021,9(46):26236-26247. doi: 10.1039/D1TA07821F

    29. [29]

      Chen S Y, Xu Y N, Du H B. One-step synthesis of uniformly distributed SiOx-C composites as stable anodes for lithium-ion batteries[J]. Dalton Trans., 2022,51(31):11909-11915. doi: 10.1039/D2DT01843H

    30. [30]

      Fu R S, Ji J J, Yun L, Jiang Y B, Zhang J, Zhou X F, Liu Z P. Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability[J]. Energy Stor. Mater., 2021,35:317-326.

    31. [31]

      Li H, Peng J, Wu Z Y, Liu X L, Liu P, Chang B B, Wang X Y. Constructing novel SiOx hybridization materials by a double-layer interface engineering for high-performance lithium-ion batteries[J]. Chem. Eng. J., 2023,462142172. doi: 10.1016/j.cej.2023.142172

  • 加载中
    1. [1]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    2. [2]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    3. [3]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    4. [4]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    5. [5]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    15. [15]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    16. [16]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    17. [17]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    18. [18]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    19. [19]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    20. [20]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

Metrics
  • PDF Downloads(7)
  • Abstract views(371)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return