Citation: Ting-Ting GUO, Yan-Yan AN, Dan ZHAO, Juan-Zhi YAN. Polyoxometalate-directing calix[4]resorcinarene-based giant [Co8] coordination cage: Self-assembly and electrochemical performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1791-1799. doi: 10.11862/CJIC.2023.143 shu

Polyoxometalate-directing calix[4]resorcinarene-based giant [Co8] coordination cage: Self-assembly and electrochemical performance

Figures(5)

  • Polyoxometalate(POM)-based supramolecular coordination cages have aroused wide interest in terms of their design and fabrication, however, it still be challenging. Herein, we report a POM-calixarene-based giant[Co8] coordination cage, [Co8(MTR4A)6Cl8](α-SiW12O40)2·30DMF·74EtOH (cage-1), assembled with six bowl-shaped calix[4]resorcinarene(MTR4A) molecules, eight Co (Ⅱ) cations, two α-SiW12O404- counter anions, and eight Cl- anions. Remarkably, α-SiW12O404- anions were sandwiched between layers via hydrogen-bonded to form a 3D supramolecular architecture. Moreover, cage-1 showed a good lithium-ion storage capacity as an anode material in lithium-ion batteries (LIBs). Furthermore, it was shown to be a highly active bifunctional electrocatalytic performance for reducing nitrite (NO2-) and oxidizing ascorbic acid (AA).
  • 加载中
    1. [1]

      Sun Y, Chen C, Liu J, Stang P J. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination[J]. Chem. Soc. Rev., 2020,49:3889-3919. doi: 10.1039/D0CS00038H

    2. [2]

      Pullen S, Clever G H. Mixed-ligand metal-organic frameworks and heteroleptic coordination cages as multifunctional scaffolds-a comparison[J]. Acc. Chem. Res., 2018,51:3052-3064. doi: 10.1021/acs.accounts.8b00415

    3. [3]

      Shi W J, Liu D, Li X, Bai S, Wang Y Y, Han Y F. Supramolecular coordination cages based on N-heterocyclic carbene-gold(Ⅰ) ligands and their precursors: Self-assembly, structural transformation, and guest-binding properties[J]. Chem. Eur. J., 2021,27(29):7853-7861. doi: 10.1002/chem.202100710

    4. [4]

      Jiang W L, Shen J C, Peng Z, Wu G Y, Yin G Q, Shi X, Yang H B. Controllable synthesis of ultrasmall Pd nanocatalysts templated by supramolecular coordination cages for highly efficient reductive dehalogenation[J]. J. Mater. Chem. A, 2020,8:12097-12105. doi: 10.1039/D0TA02725A

    5. [5]

      Fang Y, Powell J A, Li E, Wang Q, Perry Z, Kirchon A, Yang X, Xiao Z, Zhu C, Zhang L, Huang F, Zhou H C. Catalytic reactions within the cavity of coordination cages[J]. Chem. Soc. Rev., 2019,48:4707-4730. doi: 10.1039/C9CS00091G

    6. [6]

      Sánchez-González E, Tsang M Y, Troyano J, Craig G A, Furukawa S. Assembling metal-organic cages as porous materials[J]. Chem. Soc. Rev., 2022,51:4876-4889. doi: 10.1039/D1CS00759A

    7. [7]

      Schneider M L, Linder-Patton O M, Bloch W M. A covalent deprotection strategy for assembling supramolecular coordination polymers from metal-organic cages[J]. Chem. Commun., 2020,56:12969-12972. doi: 10.1039/D0CC05349J

    8. [8]

      Lin H, Xiao Z, Le K N, Yan T H, Cai P, Yang Y, Day G S, Drake H F, Xie H, Bose R, Ryan C A, Hendon C H, Zhou H C. Assembling phenothiazine into a porous coordination cage to improve its photocatalytic efficiency for organic transformations[J]. Angew. Chem. Int. Ed., 2022,61e202214055. doi: 10.1002/anie.202214055

    9. [9]

      Lorzing G R, Gosselin A J, Lindner B S, Bhattacharjee R, Yap G P A, Caratzoulasc S, Bloch E D. Design and synthesis of capped-paddlewheel-based porous coordination cages[J]. Chem. Commun., 2019,55:9527-9530. doi: 10.1039/C9CC05002G

    10. [10]

      Pei W Y, Xu G H, Yang J, Wu H, Chen B L, Zhou W, Ma J F. Versatile assembly of metal-coordinated calix[4]resorcinarene cavitands and cages through ancillary linker tuning[J]. J. Am. Chem. Soc., 2017,139:7648-7656. doi: 10.1021/jacs.7b03169

    11. [11]

      Guo T T, Cheng D M, Yang J, Xu X X, Ma J F. Calix[4]resorcinarene-based[Co16]coordination cages mediated by isomorphous auxiliary ligands for enhanced proton conduction[J]. Chem. Commun., 2019,55:6277-6280. doi: 10.1039/C9CC01828J

    12. [12]

      Wang S T, Gao X H, Hang X X, Zhu X F, Han H T, Li X K, Liao W P, Chen W. Calixarene-based {Ni18} coordination wheel: High efficient electrocatalyst for the glucose oxidation and template for the homogenous cluster fabrication[J]. J. Am. Chem. Soc., 2018,140:6271-6277. doi: 10.1021/jacs.7b13193

    13. [13]

      YAO Y F, YUAN J Y, SHEN M, DU B, XING R. Synthesis and photocatalytic performance of ZnO micro/nano materials induced by amphiphilic calixarene[J]. Chinese J. Inorg. Chem., 2022,38(2):261-273.  

    14. [14]

      Pei W Y, Yang J, Wu H, Zhou W, Yang Y W, Ma J F. A calix[4] resorcinarene-based giant coordination cage: Controlled assembly and iodine uptake[J]. Chem. Commun., 2020,56:2491-2494. doi: 10.1039/D0CC00157K

    15. [15]

      He L P, Wang S C, Lin L T, Cai J Y, Li L J, Tu T H, Chan Y T. Multicomponent metallo-supramolecular nanocapsules assembled from calix[4]resorcinarene-based terpyridine ligands[J]. J. Am. Chem. Soc., 2020,142:7134-7144. doi: 10.1021/jacs.0c01482

    16. [16]

      Guo T T, Su X F, Xu X, Yang J, Yan L, Ma J F. A calix[4]resorcinarene-based[Co12]coordination cage for highly efficient cycloaddition of CO2 to epoxides[J]. Inorg. Chem., 2019,58(24):16518-16523. doi: 10.1021/acs.inorgchem.9b02473

    17. [17]

      Pei W Y, Lu B B, Yang J, Wang T, Ma J F. Two new calix[4]resorcinarene-based coordination cages adjusted by metal ions for the Knoevenagel condensation reaction[J]. Dalton Trans., 2021,50:9942-9948. doi: 10.1039/D1DT01139A

    18. [18]

      Lee J, Brewster J T, Song B, Lynch V M, Hwang I, Li X, Sessler J L. Uranyl dication mediated photoswitching of a calix[4]pyrrole-based metal coordination cage[J]. Chem. Commun., 2018,54:9422-9425. doi: 10.1039/C8CC05160G

    19. [19]

      Kashapov R, Razuvayeva Y, Ziganshina A, Sergeeva T, Kashapova N, Sapunova A, Voloshina A, Nizameev I, Salnikov V, Zakharova L. Supramolecular assembly of calix[4]resorcinarenes and chitosan for the design of drug nanocontainers with selective effects on diseased cells[J]. New J. Chem., 2020,44:17854-17863. doi: 10.1039/D0NJ02163F

    20. [20]

      Sun K, Li H Q, Ye H J, Jiang F Q, Zhu H, Yin J. 3D-structured polyoxometalate microcrystals with enhanced rate capability and cycle stability for lithium-ion storage[J]. ACS Appl. Mater. Interfaces, 2018,10:18657-18664. doi: 10.1021/acsami.8b03071

    21. [21]

      Ilbeygi H, Kim I Y, Kim M G, Cha W, Kumar P S M, Park D H, Vinu A. Highly crystalline mesoporous phosphotungstic acid: A high performance electrode material for energy storage applications[J]. Angew. Chem. Int. Ed., 2019,58:10849-10854. doi: 10.1002/anie.201901224

    22. [22]

      Liu J H, Yu M Y, Yang J, Liu Y Y, Ma J F. Polyoxometalate-based complex/graphene for high-rate lithium-ion batteries[J]. Microporous Mesoporous Mater., 2021,310110666. doi: 10.1016/j.micromeso.2020.110666

    23. [23]

      Chen X X, Wang Z, Zhang R R, Xu L Q, Sun D. A novel polyoxometalate-based hybrid containing a 2D[CoMo8O26] structure as the anode for lithium-ion batteries[J]. Chem. Commun., 2017,53:10560-10563. doi: 10.1039/C7CC05741E

    24. [24]

      Liu W J, Yu G, Zhang M, Li R H, Dong L Z, Zhao H S, Chen Y J, Xin Z F, Li S L, Lan Y Q. Investigation of the enhanced lithium battery storage in a polyoxometalate model: from solid spheres to hollow balls[J]. Small Methods, 2018,21800154. doi: 10.1002/smtd.201800154

    25. [25]

      Wang M Y, Yuan Y Y, Qi Z Q, Chen J Y, Jiang Z G, Zhan C H. Two pseudo-T polyoxometalate-organic cages with the Td-Keggin template[J]. Chem. Mater., 2022,34:10501-10508. doi: 10.1021/acs.chemmater.2c02560

    26. [26]

      Taleghani S, Mirzaei M, Eshtiagh-Hosseini H, Frontera A. Tuning the topology of hybrid inorganic-organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective[J]. Coord. Chem. Rev., 2016,309:84-106.

    27. [27]

      Gao Y, Choudhari M, Such G K, Ritchie C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials[J]. Chem. Sci., 2022,13:2510-2527.

    28. [28]

      Cameron J M, Guillemot G, Galambos T, Amin S S, Hampson E, Haidaraly K M, Newton G N, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials[J]. Chem. Soc. Rev., 2022,51:293-328. doi: 10.1039/D1CS00832C

    29. [29]

      Centellas M S, Piot M, Salles R, Proust A, Tortech L, Brouri D, Hupin S, Abécassis B, Landy D, Bo C, Izzet G. Exploring the self-assembly of dumbbell-shaped polyoxometalate hybrids, from molecular building units to nanostructured soft materials[J]. Chem. Sci., 2020,11:11072-11080. doi: 10.1039/D0SC03243C

    30. [30]

      FU Y, LIU Y H, QU X S, LIU S P, YANG Y Y. The study of modified electrode based on Preyssler type POMs/TiO2 nanowire composite: Fabrication and electrocatalytic properties[J]. Journal of Northeast Normal University (Natural Science Edition), 2022,54:95-99.  

    31. [31]

      Liu J J, Fu J J, Liu T, Cheng F X. Photochromic polyoxometalate/naphthalenediimide hybrid structure with visible-light-driven dye degradation[J]. J. Solid State Chem., 2022,312123236. doi: 10.1016/j.jssc.2022.123236

    32. [32]

      ZHAO J, GUO Q Q, ZHENG Y G, LONG W R, TIAN H X, WANG Z Y, SHI Z Y. Synthesis, structure and electrochemical properties of a 1D chain-like Keggin-based hybrid constructed by 2,6-dimethyl-3,5-bis (pyrazole-3-yl)pyridine and copper[J]. J. Synth. Cryst., 2020,49(3):500-510. doi: 10.3969/j.issn.1000-985X.2020.03.020

    33. [33]

      TENG D, WANG Q, LI N, ZHAO H Y, HUANG R D. Synthesis and electrochemical properties of supramolecular compounds based on POMs[J]. Journal of Molecular Science, 2019,35(2):148-154. doi: 10.13563/j.cnki.jmolsci.2019.02.010

    34. [34]

      TIAN A X, LI T T, LIU J N, TIAN Y, YING J. A series of POM-based compounds constructed by mono-and mixed ligands synergetically: Structures, electrochemical and selective photocatalytic properties[J]. Scientia Sinica Chimica, 2019,49(2):319-337.  

    35. [35]

      Sun Q F, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation[J]. Science, 2010,328:1144-1147. doi: 10.1126/science.1188605

    36. [36]

      Zhai Q Y, Su J, Guo T T, Yang J, Ma J F, Chen J S. Two porous polyoxometalate-resorcin[4]arene-based supramolecular complexes: Selective adsorption of organic dyes and electrochemical properties[J]. Cryst. Growth Des., 2018,18:6046-6053. doi: 10.1021/acs.cgd.8b00891

    37. [37]

      Sheldrick G M. SHELXS-2018, Program for the crystal structure solution. University of Göttingen, Germany, 2018.

    38. [38]

      Sheldrick G M. SHELXL-2018, Program for the crystal structure refinement. University of Göttingen, Germany, 2018.

    39. [39]

      Farrugia L J. WINGX: A Windows program for crystal structure analysis. University of Glasgow: Glasgow, UK, 1988.

    40. [40]

      Spek A L. Single-crystal structure validation with the program PLATON[J]. J. Appl. Crystallogr., 2003,36:7-13. doi: 10.1107/S0021889802022112

    41. [41]

      Wang J X, Liu Y B, Sha Q, Cao D W, Hu H B, Shen T Y, He L, Song Y F. Electronic structure reconfiguration of self-supported polyoxometalate-based lithium-ion battery anodes for efficient lithium storage[J]. ACS Appl. Mater. Interfaces, 2022,14(1):1169-1176. doi: 10.1021/acsami.1c21461

    42. [42]

      Yang X L, Ye Y S, Wang Z M, Zhang Z H, Zhao Y L, Yang F, Zhu Z Y, Wei T. POM-based MOF-derived Co3O4/CoMoO4 nanohybrids as anodes for high-performance lithium-ion batteries[J]. ACS Omega, 2020,5(40):26230-26236. doi: 10.1021/acsomega.0c03929

    43. [43]

      Yu M Y, Liu J H, Yang J, Ma J F. A family of polyoxometalate-resorcin[4]arene-based metal-organic materials: Assemblies, structures and lithium ion battery properties[J]. J. Alloy. Compd., 2021,868(5)159009.

    44. [44]

      Ge D H, Peng J, Qu G L, Geng H B, Deng Y Y, Wu J J, Cao X Q, Zheng J W, Gu H W. Nanostructured Co(Ⅱ)-based MOFs as promising anodes for advanced lithium storage[J]. New J. Chem., 2016,40:9238-9244. doi: 10.1039/C6NJ02568D

    45. [45]

      Dong C F, Xu L Q. Cobalt-and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries[J]. ACS Appl. Mater. Interfaces, 2017,9:7160-7168. doi: 10.1021/acsami.6b15757

    46. [46]

      Liu J H, Shen Q T, Yang J, Yu M Y, Ma J F. Polyoxometalate-templated cobalt-resorcin[4]arene frameworks: Tunable structure and lithium-ion battery performance[J]. Inorg. Chem., 2021,60:3729-3740. doi: 10.1021/acs.inorgchem.0c03511

    47. [47]

      Song Y D, Yu L, Gao Y R, Shi C D, Cheng M L, Wang X M, Liu H J, Liu Q. One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries[J]. Inorg. Chem., 2017,56(19):11603-11609. doi: 10.1021/acs.inorgchem.7b01441

    48. [48]

      Huang Q, Wei T, Zhang M, Dong L Z, Zhang A M, Li S L, Liu W J, Liu J, Lan Y Q. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance[J]. J. Mater. Chem. A, 2017,5:8477-8483. doi: 10.1039/C7TA00900C

    49. [49]

      Wang Z H, Wang X F, Tan Z, Song X Z. Polyoxometalate/metal-organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis[J]. Mater. Today, 2021,19100618.

    50. [50]

      Zeb Z, Huang Y C, Chen L L, Zhou W B, Liao M H, Jiang Y Y, Li H T, Wang L M, Wang L, Wang H, Wei T, Zang D J, Fan Z J, Wei Y G. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction[J]. Chem. Soc. Rev., 2023,482215058.

    51. [51]

      Fabre B, Falaise C, Cadot E. Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: Recent advances and prospects[J]. ACS Catal., 2022,12(19):12055-12091. doi: 10.1021/acscatal.2c01847

    52. [52]

      WANG Y, XIE Y Q, WANG H, HUANG Z, KE D G, CHEN W Z, WU P F, XIAO Z C. Electrochemical studies of tris(alkoxo)-derived hexavanadate[J]. Journal of Analytical Science, 2019,35(5):577-581. doi: 10.13526/j.issn.1006-6144.2019.05.009

    53. [53]

      ZHOU X, YE J, WANG Z H, JIN S R. Two inorganic-organic hybrid crystals based on polyoxometallates and imidazole compounds: Syntheses and properties[J]. Chinese J. Inorg. Chem., 2019,35(1):43-47.  

    54. [54]

      Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts[J]. Chem. Rev., 1998,98:219-238. doi: 10.1021/cr960403a

    55. [55]

      Gao G G, Xu L, Wang W J, Qu X S, Liu H, Yang Y Y. Cobalt(Ⅱ)/nickel(Ⅱ)-centered keggin-type heteropolymolybdates: Syntheses, crystal structures, magnetic and electrochemical properties[J]. Inorg. Chem., 2008,47:2325-2333. doi: 10.1021/ic700797v

    56. [56]

      Antonio M R, Chiang M H. Stabilization of plutonium(Ⅲ) in the Preyssler polyoxometalate[J]. Inorg. Chem., 2008,47:8278-8285. doi: 10.1021/ic8008893

    57. [57]

      Zhou W L, Zheng Y P, Yuan G, Peng J. Three polyoxometalates-based organic-inorganic hybrids decorated with Cu-terpyridine complexes exhibiting dual functional electro-catalytic behaviors[J]. Dalton Trans., 2019,48:2598-2605. doi: 10.1039/C8DT04945A

    58. [58]

      Keita B, Belhouari A, Nadjo L, Contant R. Electrocatalysis by polyoxometalate/vbpolymer systems: Reduction of nitrite and nitric oxide[J]. J. Electroanal. Chem., 1995,381:243-250. doi: 10.1016/0022-0728(94)03710-K

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    7. [7]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    8. [8]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    9. [9]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    10. [10]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    11. [11]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    12. [12]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    13. [13]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    14. [14]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    15. [15]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    16. [16]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    17. [17]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    18. [18]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    19. [19]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    20. [20]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

Metrics
  • PDF Downloads(0)
  • Abstract views(551)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return