Citation: Bo-Wen MA, Jia-Wei LI, Meng WANG, Yu-Heng LI, Ming LI, Chuan-Jun YUAN. Synthesis of terbium fluorescent nanocomplexes and their applications in the development of latent bloody fingerprints[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1673-1681. doi: 10.11862/CJIC.2023.141 shu

Synthesis of terbium fluorescent nanocomplexes and their applications in the development of latent bloody fingerprints

Figures(10)

  • Carboxyl functionalized terbium fluorescent nanocomplex was chemically synthesized by a one-step process using terbium ion as the luminescence center, p-phthalic acid as the first ligand, and phenanthroline as the second ligand. The carboxyl groups on the surface of these nanocomplexes were further activated using 1-(3-dimethyl-amino-propyl)-3-ethylcarbodiimine hydrochloride as the activator combined with N-hydroxy succinimide as the stabilizer. Due to the rapid and mild amide reaction between the activated carboxyl groups on the surface of the nano-complexes and the amino groups in bloody fingerprint residuals, the resulting nanocomplexes were finally used as fluorescent probes for the targeted development of latent bloody fingerprints. Excited with 254 nm ultraviolet light, the papillary ridges could emit strong green fluorescence, which could give a sufficient contrast between the developing signal and the background noise; the papillary ridges were coherent, the minutiae were sharp, and the sweat pores were distinct; the contrast between the ridges and the furrows were obvious. The parameters for fingerprint development were optimized, namely, the mass ratio of nanocomplex to water in suspension was recommended to be 1:35, and the period for staining was recommended to be 20 s. In addition, the contrast, sensitivity, selectivity, and applicability in fingerprint development were also investigated in detail. Experimental results show that the activated carboxyl functionalized terbium fluorescent nanocomplexes are suitable for developing the latent bloody fingerprints on smooth non- and semi-porous surfaces with high quality and high efficiency.
  • 加载中
    1. [1]

      WANG M, LI M, YUAN C J. Frontiers in fingerprint development. Shenyang: Northeastern University Press, 2019: 23-24

    2. [2]

      LI D Z, ZHANG Z L, LIU L. Fluorescence development of blood fingerprint[J]. Spectrosc. Spectr. Anal., 2001,21(5):676-679. doi: 10.3321/j.issn:1000-0593.2001.05.030

    3. [3]

      Wang Y Q, Wang J, Ma Q Q, Li Z H, Yuan Q. Recent progress in background-free latent fingerprint imaging[J]. Nano Res., 2018,11(10):5499-5518. doi: 10.1007/s12274-018-2073-1

    4. [4]

      Wang M, Li M, Yu A Y, Yang M Y, Mao C B. Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences[J]. Adv. Funct. Mater., 2017,27(14)1606243. doi: 10.1002/adfm.201606243

    5. [5]

      WANG M, JU J S, ZHU Z X, SHEN D P, LI M, YUAN C J, WU J. Recent progress in nanomaterial-based fluorescent development of latent fingerprints[J]. Sci. Sin. Chim., 2019,49(12):1425-1441.  

    6. [6]

      LI M, NI L, WANG M, ZHU Z X, YUAN C J, WU J. Research progress on evaluating the effects of nanomaterial-based development of latent fingerprints[J]. Spectrosc. Spectr. Anal., 2021,41(9):2670-2680.  

    7. [7]

      SHI Z X, WANG Y F, LIU J J, YANG R Q, ZUO S L, YU Y C. Water-soluble fluorescent CdSe quantum dots: synthesis and application for fingerprint developing[J]. Chinese J. Inorg. Chem., 2008,24(7):1186-1190. doi: 10.3321/j.issn:1001-4861.2008.07.035

    8. [8]

      YANG R Q, ZHOU Q Y, WANG Y F, JIN Y J. Nano meter CdS/PAMAM G5.0 for developing oil latent fingerprints on adhesive side of common tapes[J]. Chinese J. Inorg. Chem., 2008,24(11):1874-1879.  

    9. [9]

      Xu L R, Zhang C Z, He Y Y, Su B. Advances in the development and component recognition of latent fingerprints[J]. Sci. China Chem., 2015,58(7):1090-1096. doi: 10.1007/s11426-014-5294-5

    10. [10]

      Su B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components[J]. Anal. Bioanal. Chem., 2016,408(11):2781-2791. doi: 10.1007/s00216-015-9216-y

    11. [11]

      Becue A, Moret S, Champod C, Margot P. Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces[J]. Forensic Sci. Int., 2009,191(1/2/3):36-41.

    12. [12]

      WANG K, YANG R Q, XIA B B, XIONG H. Water-soluble fluorescent Zn xCd1-xSe quantum dots: Synthesis and application for bloody fingerprint development[J]. Materials Reports, 2010,24(12):21-24.  

    13. [13]

      Moret S, Becue A, Champod C. Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on nonporous surfaces[J]. Forensic Sci. Int., 2013,224(1/2/3):101-110.

    14. [14]

      Li B Y, Zhang X L, Zhang L Y, Wang T T, Li L, Wang C G, Su Z M. NIR-responsive NaYF4:Yb, Er, Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints[J]. Dyes Pigment., 2016,134:178-185. doi: 10.1016/j.dyepig.2016.07.014

    15. [15]

      ZHU Z X, WANG M, LI M, YUAN C J, WU J. Europium nanocomplex for development of latent fingerprints based on carboxyl activation mechanism[J]. Chin. J. Anal. Chem., 2021,49(2):237-245.  

    16. [16]

      WANG M. Synthesis of LaPO4: Ce, Tb fluorescent nanopowders and their applications in nondestructive development of latent fingerprints[J]. Spectrosc. Spectr. Anal., 2016,36(5):1412-1417.  

    17. [17]

      Peng D, Wu X, Liu X, Huang M J, Wang D, Liu R L. Color-tunable binuclear (Eu, Tb) nanocomposite powder for the enhanced development of latent fingerprints based on electrostatic interactions[J]. ACS Appl. Mater. Interfaces, 2018,10(38):32859-32866. doi: 10.1021/acsami.8b10371

    18. [18]

      Wang M, Li M, Yang M Y, Zhang X M, Yu A Y, Zhu Y, Qiu P H, Mao C B. NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb, Er upconversion nanoparticles in a dry powder state[J]. Nano Res., 2015,8(6):1800-1810. doi: 10.1007/s12274-014-0686-6

    19. [19]

      Wang M, Li M, Yu A Y, Wu J, Mao C B. Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints[J]. ACS Appl. Mater. Interfaces, 2015,7(51):28110-28115.

    20. [20]

      Wang M, Zhu Y, Mao C B. Synthesis of NIR-responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles using an optimized solvo-thermal method and their applications in enhanced development of latent fingerprints on various smooth substrates[J]. Langmuir, 2015,31(25):7084-7090.

    21. [21]

      Gao F, Han J X, Zhang J, Li Q, Sun X F, Zheng J C, Bao L R, Li X, Liu Z L. The synthesis of newly modified CdTe quantum dots and their application for improvement of latent fingerprint detection[J]. Nanotechnology, 2011,22(7)075705.

    22. [22]

      Moret S, Becue A, Champod C. Nanoparticles for fingermark detection: An insight into the reaction mechanism[J]. Nanotechnology, 2014,25(42)425502.

    23. [23]

      Wang J, Ma Q Q, Liu H Y, Wang Y Q, Shen H J, Hu X X, Ma C, Yuan Q, Tan W H. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition[J]. Anal. Chem., 2017,89(23):12764-12770.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(541)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return