Citation: Ya-Hui GUAN, Liang ZHAO, Nian-Tao YAO, Oshio Hiroki, Tao LIU. Two cyano-bridged {Fe2Ni} single-chain magnets with huge magnetic hysteresis[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1775-1781. doi: 10.11862/CJIC.2023.136 shu

Two cyano-bridged {Fe2Ni} single-chain magnets with huge magnetic hysteresis

Figures(3)

  • Herein, two compounds[Ni (L1)] [Fe (Tp)(CN)3]2·3.5H2O (1) and[Ni (L2)] [Fe (Tp)(CN)3]2·3H2O (2), where Tp=hydrotris(pyrazolyl) borate, L1=3,4-bis(1H-imidazol-1-yl) thiophen, L2=1,2-bis(1H-imidazol-1-yl) thiophen, were successfully synthesized by using isomers with different symmetries to change the intermolecular hydrogen bonding network and manipulate the single-chain magnet behavior. The magnetic performance showed that 1 and 2 displayed single-chain magnet behavior with huge coercive fields of 8.41 and 3.84 kOe, respectively.
  • 加载中
    1. [1]

      Hitoshi M M, Masahiro Y, Rodolphe C. Slow dynamics of the magnetization in one-dimensional coordination polymers: Single-chain magnets[J]. Inorg. Chem., 2009,48(8):3420-3437. doi: 10.1021/ic802050j

    2. [2]

      Kishine J I, Watanabe T, Deguchi H, Mito M, Sakai T, Tajiri T, Yamashita M, Miyasaka H. Spin correlation and relaxational dynamics in molecular-based single-chain magnets[J]. Phys. Rev. B, 2006,74(22)224419. doi: 10.1103/PhysRevB.74.224419

    3. [3]

      Camarero J, Coronado E. Molecular vs inorganic spintronics: The role of molecular materials and single molecules[J]. J. Mater. Chem., 2009,19(12):1678-1684. doi: 10.1039/b819594n

    4. [4]

      Guo L D, Gu X R, Zhu X W, Sun X N. Recent advances in molecular spintronics: Multifunctional spintronic devices[J]. Adv. Mater., 2019,31(45)1805355. doi: 10.1002/adma.201805355

    5. [5]

      Chiesa A, Macaluso E, Petiziol F, Wimberger S, Santini P, Carretta S. Molecular nanomagnets as qubits with embedded quantum-error correction[J]. J. Phys. Chem. Lett., 2020,11(20):8610-8615. doi: 10.1021/acs.jpclett.0c02213

    6. [6]

      Gaita A, Luis F, Hill S, Coronado E. Molecular spins for quantum computation[J]. Nat. Chem., 2019,11(4):301-309. doi: 10.1038/s41557-019-0232-y

    7. [7]

      Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindign A, Rettori A, Pini M G, Novak M A. Cobalt(Ⅱ)-nitronyl nitroxide chains as molecular magnetic nanowires[J]. Angew. Chem. Int. Ed., 2001,40(9):1760-1763. doi: 10.1002/1521-3773(20010504)40:9<1760::AID-ANIE17600>3.0.CO;2-U

    8. [8]

      Studniarek M, Wackerlin C, Singha A, Baltic R, Diller K, Donati F, Rusponi S, Brune H, Lan Y, Klyatskaya S, Ruben M, Seitsonen A P, Dreiser J. Understanding the superior stability of single-molecule magnets on an oxide film[J]. Adv. Sci., 2019,6(22)1901736. doi: 10.1002/advs.201901736

    9. [9]

      Wang J H, Li Z Y, Yamashita M, Bu X H. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets[J]. Coord. Chem. Rev., 2021,428(1)213617.

    10. [10]

      Wang B W, Wang X Y, Sun H L, Jiang S D, Gao S. Evolvement of molecular nanomagnets in China[J]. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2013,371(2000).

    11. [11]

      HE Y L, MENG Y S, SUN H Y, JIANG W J, JIAO C Q, LIU T. Synthesis and magnetism of cyano-bridged Fe2Nidouble-zigzag chains[J]. Chinese J. Inorg. Chem., 2019,35(9):1570-1578.  

    12. [12]

      JIAO C Q, JIANG W J, WEN W, REN Y, WANG J L, LIU T, HE C. Tuning assembly and magnetic interactions of cyano-bridged Fe(Ⅲ)-Mn(Ⅱ) bimetallic chains[J]. Chinese J. Inorg. Chem., 2016,32(9):1637-1646.  

    13. [13]

      Wei R M, Cao F, Li J, Yang L, Han Y, Zhang X L, Zhang Z, Wang X Y, Song Y. Single-chain magnets based on octacyanotungstate with the highest energy barriers for cyanide compounds[J]. Sci. Rep., 2016,624372. doi: 10.1038/srep24372

    14. [14]

      Shi L, Shao D, Wei X Q, Dunbar K R, Wang X Y. Enhanced single-chain magnet behavior via anisotropic exchange in a cyano-bridged Mo(Ⅲ)-Mn(Ⅱ) chain[J]. Angew. Chem. Int. Ed., 2020,59(26):10379-10384. doi: 10.1002/anie.202001706

    15. [15]

      Sun H L, Wang Z M, Gao S. Strategies towards single-chain magnets[J]. Coord. Chem. Rev., 2010,254(9/10):1081-1100.

    16. [16]

      Jiang W J, Lu H H, Meng Y S, Jiao C Q, Liu T. Dehydration-actuated single-chain magnet through charge transfer in a cyanide-bridged Fe2Co chain[J]. Inorg. Chem. Commun., 2020,112107715. doi: 10.1016/j.inoche.2019.107715

    17. [17]

      Dong D P, Liu T, Zheng H, Zhao L, Zhuang P F, He C, Duan C Y. Synthesis, structures and single chain magnet behavior of a cyano-bridged {Fe2Cu} chain[J]. Inorg. Chem. Commun., 2012,24:153-156. doi: 10.1016/j.inoche.2012.08.021

    18. [18]

      Zhuang P F, Liu T, Zheng H, Hu J X, Xie X H, Ren L X, Li W Q, He C, Duan C Y. Cyano-bridged Fe2Cu double-zigzag chains: From metamagnetism to coexistence of metamagnetism and single-chain magnet behavior[J]. Inorg. Chem. Commun., 2014,49:147-150. doi: 10.1016/j.inoche.2014.09.032

    19. [19]

      Zhao L, Zhang Y J, Hu J X, Jiao C Q, Wang J L, Duan C Y, Liu T. Coexistence of the single chain magnet and spin-glass behavior in a cyano-bridged {Fe2Fe} chain[J]. Inorg. Chem. Commun., 2016,66:55-58. doi: 10.1016/j.inoche.2016.02.011

    20. [20]

      Yang C I, Tsai Y J, Hung S P, Tsai H L, Nakano M. A manganese single-chain magnet exhibits a large magnetic coercivity[J]. Chem. Commun., 2010,46(31):5716-5718. doi: 10.1039/c0cc00372g

    21. [21]

      Liu Q, Hu J X, Meng Y S, Jiang W J, Wang J L, Wen W, Wu Q, Zhu H L, Zhao L, Liu T. Asymmetric coordination toward a photoinduced single-chain magnet showing high coercivity values[J]. Angew. Chem. Int. Ed., 2021,60(19):10537-10541. doi: 10.1002/anie.202017249

    22. [22]

      Sessoli R. Record hard magnets: Glauber dynamics are key[J]. Angew. Chem. Int. Ed., 2008,47(30):5508-5510. doi: 10.1002/anie.200801549

    23. [23]

      Liu X, Feng X, Meihaus K R, Meng X, Zhang Y, Li L, Liu J L, Pedersen K S, Keller L, Shi W, Zhang Y Q, Cheng P, Long J R R. Coercive fields above 6 T in two cobalt(Ⅱ)-radical chain compounds[J]. Angew. Chem. Int. Ed., 2020,59(26):10610-10618. doi: 10.1002/anie.202002673

    24. [24]

      Zhuang P F, Zhang Y J, Zheng H, Jiao C Q, Zhao L, Wang J L, He C, Duan C Y, Liu T. Single-molecule magnet behavior in three cyano-bridged heterometallic Fe(Ⅲ)-Ni(Ⅱ) clusters[J]. Dalton Trans., 2015,44(7):3393-3398. doi: 10.1039/C4DT03365E

    25. [25]

      Yang J, Zhao X H, Deng Y F, Zhang X Y, Chang X Y, Zheng Z, Zhang Y Z. Azido-cyanide mixed-bridged Fe(Ⅲ)-Ni(Ⅱ) complexes[J]. Inorg. Chem., 2020,59(22):16215-16224. doi: 10.1021/acs.inorgchem.0c01917

    26. [26]

      Hoshino N, Sekine Y, Nihei M, Oshio H. Achiral single molecule magnet and chiral single chain magnet[J]. Chem. Commun., 2010,46(33):6117-6119. doi: 10.1039/c0cc00184h

    27. [27]

      Fu S J, Wang L, Tao T, Hu B, Huang W, You X Z. Zinc(Ⅱ) and cadmium(Ⅱ) coordination polymers mediated by rationally designed symmetrical/asymmetrical V-shaped heterocyclic aromatic ligands exhibiting different supramolecular architectures[J]. CrystEngComm, 2011,13(20):6192-6199. doi: 10.1039/c1ce05516j

    28. [28]

      Yao N T, Zhao L, Yi C, Liu Q, Li Y M, Meng Y S, Oshio H, Liu T. Manipulating selective metal-to-metal electron transfer to achieve multi-phase transitions in an asymmetric[Fe2Co]-assembled mixed-valence chain[J]. Angew. Chem. Int. Ed., 2022,61(11)e202115367. doi: 10.1002/anie.202115367

    29. [29]

      Reczynski M, Pinkowicz D, Nakabayashi K, Nather C, Stanek J, Koziel M, Kalinowska-Tluscik J, Sieklucka B, Ohkoshi S I, Nowicka B. Room-temperature bistability in a Ni-Fe chain: Electron transfer controlled by temperature, pressure, light, and humidity[J]. Angew. Chem. Int. Ed., 2021,60(5):2330-2338. doi: 10.1002/anie.202012876

    30. [30]

      WU J Q, MENG Y S, ZHU H L, JIAO C Q, LIU T. Synthesis and magnetism of cyano-bridged Fe2Ni2 single-molecule magnets[J]. Chinese J. Inorg. Chem., 2020,36(12):2331-2339.  

    31. [31]

      Xie K P, Ruan Z Y, Lyu B H, Chen X X, Zhang X W, Huang G Z, Chen Y C, Ni Z P, Tong M L. Guest-driven light-induced spin change in an azobenzene loaded metal-organic framework[J]. Angew. Chem. Int. Ed., 2021,60(52):27144-27150. doi: 10.1002/anie.202113294

    32. [32]

      Hu J X, Zhu H L, Meng Y S, Pang J D, Li N, Liu T, Bu X H. Ligand modified and light switched on/off single-chain magnets of {Fe2Co} coordination polymers via metal-to-metal charge transfer[J]. CCS Chemistry, 2023,5(4):865-875. doi: 10.31635/ccschem.022.202202023

    33. [33]

      Dong D P, Zhang Y J, Zheng H, Zhuang P F, Zhao L, Xu Y, Hu J, Liu T, Duan C Y. Slow magnetic relaxation in a cyano-bridged ferromagnetic {FeNi} alternating chain[J]. Dalton Trans., 2013,42(21):7693-7698. doi: 10.1039/c3dt50273b

    34. [34]

      Charytanowicz T, Jankowski R, Zychowicz M, Chorazy S, Sieklucka B. The rationalized pathway from field-induced slow magnetic relaxation in Co-W chains to single-chain magnetism in isotopological Co-W analogues[J]. Inorg. Chem. Front., 2022,9(6):1152-1170. doi: 10.1039/D1QI01427G

  • 加载中
    1. [1]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    2. [2]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    3. [3]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    4. [4]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    5. [5]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    6. [6]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    7. [7]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    8. [8]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    9. [9]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    10. [10]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    11. [11]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    12. [12]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    13. [13]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    14. [14]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    15. [15]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    16. [16]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    17. [17]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    20. [20]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

Metrics
  • PDF Downloads(2)
  • Abstract views(452)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return