Citation: Heng LU, Xiao-Hong TAN, Shao-Ru WU, Yan-Mei ZHOU, Guo-Bin HUANG, Jun-Ying ZHANG, Qiao-Wen ZHENG, Zhi-Xiong CAI, Fei-Ming LI, Mao-Sheng ZHANG. Preparation of polymethyl methacrylate-coated (CH3NH3)PbBr3 nanocrystalline electrospinning film and fluorescence sensing of ammonia[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1757-1765. doi: 10.11862/CJIC.2023.135 shu

Preparation of polymethyl methacrylate-coated (CH3NH3)PbBr3 nanocrystalline electrospinning film and fluorescence sensing of ammonia

  • Corresponding author: Mao-Sheng ZHANG, zms0557@mnnu.edu.cn
  • Received Date: 22 November 2022
    Revised Date: 18 May 2023

Figures(7)

  • In this work, a novel polymethyl methacrylate-coated MAPbBr3 nanocrystalline (MAPbBr3@PMMA, MA=methylammonium) electrospinning film was synthesized by in situ growth method, and NH3 sensor was constructed based on the fluorescence significant quenching of the MAPbBr3@PMMA electrospinning film after the addition of NH3 gas. The morphology and structure of MAPbBr3@PMMA fiber were characterized by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and infrared spectroscopy, and its optical properties were characterized by UV-Vis and fluorescence spectroscopy. The results showed that the prepared NH3 sensor showed a good linear relationship (r=0.995 9) to NH3 gas concentration in a range of 8-90 mg·L-1, low detection limit (3 mg·L-1), and high reproducibility and selectivity. Finally, the standard recovery and the relative standard deviation (RSD) for NH3 of actual sample gas were 92.2%-102.1% and 1.8%-3.2%, respectively.
  • 加载中
    1. [1]

      Katilie C J, Simon A G, DeGreeff L E. Quantitative analysis of vaporous ammonia by online derivatization with gas chromatography-mass spectrometry with applications to ammonium nitrate-based explosive[J]. Talanta, 2019,193:87-92. doi: 10.1016/j.talanta.2018.09.099

    2. [2]

      Talwar V, Singh O, Singh R C. ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor[J]. Sens. Actuator B-Chem., 2014,191:276-282. doi: 10.1016/j.snb.2013.09.106

    3. [3]

      Mani G K, Rayappan J B B. A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film[J]. Sens. Actuator B-Chem, 2013,183:459-466. doi: 10.1016/j.snb.2013.03.132

    4. [4]

      Wright L P, Zhang L, Cheng I, Aherne J, Wentworth G R. Impacts and effects indicators of atmospheric deposition of major pollutants to various ecosystems-A review[J]. Aerosol Air Qual. Res., 2018,18(8):1953-1992. doi: 10.4209/aaqr.2018.03.0107

    5. [5]

      Skjøth C A, Geels C. The effect of climate and climate change on ammonia emissions in Europe[J]. Atmos. Chem. Phys., 2013,13(1):117-128. doi: 10.5194/acp-13-117-2013

    6. [6]

      Gouma P, Kalyanasundaram K, Yun X, Stanacevic M, Wang L S. Nanosensor and breath analyzer for ammonia detection in exhaled human breath[J]. IEEE Sens. J., 2010,10(1):49-53. doi: 10.1109/JSEN.2009.2036050

    7. [7]

      HOU W J, MA Y T, HAN G Y. Secondary crystallization and passivation of perovskite film induced by dithizone post-treatment[J]. Chinese J. Inorg. Chem., 2021,37(8):1414-1420.  

    8. [8]

      Lu H, Tan X H, Huang G B, Wu S R, Zhou Y M, Zhang J Y, Zheng Q W, Chen T J, Li F M, Cai Z X, Zeng J B, Zhang M S. Green synthesis of highly stable CsPbBr3 perovskite nanocrystals using natural deep eutectic solvents as solvents and surface ligands[J]. Nanoscale, 2022,14(46):17222-17229. doi: 10.1039/D2NR04173A

    9. [9]

      YANG Z S, KE W F, WANG Y X, HUANG L Q, GUO P C, ZHU H. Preparation and characterization of hybrid perovskite (NH3C6H12NH3) CuCl4[J]. Chinese J. Inorg. Chem., 2017,33(9):1568-1572.  

    10. [10]

      Sharma S K, Phadnis C, Das T K, Kumar A, Kavaipatti B, Chowdhury A, Yella A. Reversible dimensionality tuning of hybrid perovskites with humidity: Visualization and application to stable solar cells[J]. Chem. Mater., 2019,31(9):3111-3117. doi: 10.1021/acs.chemmater.8b04115

    11. [11]

      Stoeckel M A, Gobbi M, Bonacchi S, Liscio F, Ferlauto L, Orgiu E, Samorì P. Reversible, fast, and wide-range oxygen sensor based on nanostructured organometal halide perovskite[J]. Adv. Mater., 2017,29(38)1702469. doi: 10.1002/adma.201702469

    12. [12]

      Nickel N H, Lang F, Brus V V, Shargaieva O, Rappich J. Unraveling the light-induced degradation mechanisms of CH3NH3PbI3 perovskite films[J]. Adv. Electron. Mater., 2017,3(12)1700158. doi: 10.1002/aelm.201700158

    13. [13]

      Chen X, Hu H W, Xia Z M, Gao W, Gou W Y, Qu Y Q, Ma Y Y. CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection[J]. J. Mater. Chem. C, 2017,5(2):309-313. doi: 10.1039/C6TC04136A

    14. [14]

      Chen C Q, Cai Q, Luo F, Dong N, Guo L H, Qiu B, Lin Z Y. Sensitive fluorescent sensor for hydrogen sulfide in rat brain microdialysis via CsPbBr3 quantum dots[J]. Anal. Chem., 2919,91(24):15915-15921.

    15. [15]

      Zhang J, Gan X L, Sun H R, Yuan H B, Yu L T, Hu Z Y, Zhu Y J. Pb-site doping of lead halide perovskites for efficient solar cells[J]. Sol. RRL, 2020,4(2)1900227. doi: 10.1002/solr.201900227

    16. [16]

      You X, Wu J J, Chi Y W. Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell[J]. Anal. Chem., 2019,91(8):5058-5066. doi: 10.1021/acs.analchem.8b05253

    17. [17]

      Kim S H, Kirakosyan A, Choi J, Kim J H. Detection of volatile organic compounds (VOCs), aliphatic amines, using highly fluorescent organic-inorganic hybrid perovskite nanoparticle[J]. Dyes Pigment., 2017,147:1-5. doi: 10.1016/j.dyepig.2017.07.066

    18. [18]

      Singh A K, Singh S, Singh V N, Gupta G, Gupta B K. Probing reversible photoluminescence alteration in CH3NH3PbBr3 colloidal quantum dots for luminescence-based gas sensing application[J]. J. Colloid Interface Sci., 2019,554:668-673. doi: 10.1016/j.jcis.2019.07.054

    19. [19]

      Huang W, Manser J S, Sadhu S, Kamat P V, Ptasinska S. Direct observation of reversible transformation of CH3NH3PbI3 and NH4PbI3 induced by polar gaseous molecules[J]. J. Phys. Chem. Lett., 2016,7(24):5068-5073. doi: 10.1021/acs.jpclett.6b02499

    20. [20]

      Kumar P, Ganesh N, Narayan K S. Electrospun fibers containing emissive hybrid perovskite quantum dots[J]. ACS Appl. Mater. Interfaces, 2019,11(27):24468-24477. doi: 10.1021/acsami.9b08409

    21. [21]

      Li G S, Zhang W Q, She C K, Jia S C, Liu S H, Yue F Y, Jing C B, Cheng Y, Chu J H. Stable fluorescent NH3 sensor based on MAPbBr3 encapsulated by tetrabutylammonium cations[J]. J. Alloy. Compd., 2020,835155386. doi: 10.1016/j.jallcom.2020.155386

    22. [22]

      Huang H, Hao M W, Song Y L, Dang S, Liu X T, Dong Q F. Dynamic passivation in perovskite quantum dots for specific ammonia detection at room temperature[J]. Small, 2020,16(6)1904462. doi: 10.1002/smll.201904462

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    7. [7]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    10. [10]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    17. [17]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(1)
  • Abstract views(421)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return