Citation: Xiang-Ping WEN, La-Zhen SHEN, Jian-Hui LI, Xiao-Li GAO, Yi-Kun LI, Xin ZHANG, Jia-Yu LÜ. Nitrogen-doped fluorescent carbon dots are used for ultra-sensitive detection of Co2+ and cell imaging[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1471-1480. doi: 10.11862/CJIC.2023.133 shu

Nitrogen-doped fluorescent carbon dots are used for ultra-sensitive detection of Co2+ and cell imaging

  • Corresponding author: Xiang-Ping WEN, wenxiangping99@163.com
  • Received Date: 8 April 2023
    Revised Date: 26 June 2023

Figures(9)

  • For the first time, nitrogen-doped carbon dots (N-CDs) with excellent properties were synthesized by hydrothermal method using honeysuckle as a carbon source and ethylenediamine as a nitrogen source. The prepared N-CDs have abundant functional groups, small particle sizes, good water solubility, excellent fluorescence performance, and high chemical stability. They can emit bright blue fluorescence under ultraviolet light. Using quinine sulfate as a reference, the fluorescence quantum yield of N-CDs was measured to be as high as 15.6%. Under optimal conditions, N-CDs could selectively detect Co2+, and the fluorescence intensity of N-CDs was linearly quenched by Co2+ in a range of 0.5 to 3.6 nmol·L-1, with a detection limit as low as 1.38 nmol·L-1. The quenching mechanism belongs to the internal filtering effect and static quenching. Therefore, an ultra-sensitive Co2+ detection method has been established. To further confirm the feasibility of this sensor, we have also successfully applied it to the precise analysis of Co2+ in tap water samples. In addition, N-CDs have been successfully used for cell imaging and intracellular Co2+ sensing due to their low cytotoxicity and good biocompatibility.
  • 加载中
    1. [1]

      Awual M R, Ismael M, Yaita T. Efficient detection and extraction of cobalt(Ⅱ) from lithium ion batteries and wastewater by novel composite adsorbent[J]. Sens. Actuator B-Chem., 2014,191:9-18. doi: 10.1016/j.snb.2013.09.076

    2. [2]

      Stoica A I, Peltea M, Baiulescu G E, Ionica M. Determination of cobalt in pharmaceutical products[J]. J. Pharm. Biomed. Anal., 2004,36(3):653-656. doi: 10.1016/j.jpba.2004.07.030

    3. [3]

      Barras F, Fontecave M. Cobalt stress in Escherichia coli and Salmonella enterica: Molecular bases for toxicity and resistance[J]. Metallomics, 2011,3(11):1130-1134. doi: 10.1039/c1mt00099c

    4. [4]

      Bano D, Kumar V, Chandra S. Synthesis of highly fluorescent nitrogen-rich carbon quantum dots and their application for the turn-off detection of cobalt(Ⅱ)[J]. Opt. Mater., 2019,92:311-318. doi: 10.1016/j.optmat.2019.04.045

    5. [5]

      Wu Y Y, Liu Y D, Yin J Y. Nitrogen-doped carbon dots synthesized from acrylic acid and ethylenediamine for simple and selective determination of cobalt ions in aqueous media[J]. J. Lumin., 2019,206:169-175. doi: 10.1016/j.jlumin.2018.10.059

    6. [6]

      Zhao C X, Li X, Cheng C S. Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt(Ⅱ) ions and pH sensing[J]. Microchem. J., 2019,147:183-190. doi: 10.1016/j.microc.2019.03.029

    7. [7]

      Chen H, Yuan F, Xu J. Simple and sensitive detection method for cobalt(Ⅱ) in water using CePO4: Tb3+ nanocrystals as fluorescent probes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2013,107:151-155. doi: 10.1016/j.saa.2013.01.020

    8. [8]

      Zi L, Huang Y, Yan Z. Thioglycolic acid-capped CuInS2/ZnS quantum dots as fluorescent probe for cobalt ion detection[J]. J. Lumin., 2014,148:359-363. doi: 10.1016/j.jlumin.2013.12.051

    9. [9]

      Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J. Am. Chem. Soc., 2004,126(40):12736-12737. doi: 10.1021/ja040082h

    10. [10]

      Yu J K, Yong X, Tang Z Y, Yang B, Lu S Y. Theoretical understanding of structure-property relationships in luminescence of carbon dots[J]. J. Phys. Chem. Lett., 2021,12:7671-7687. doi: 10.1021/acs.jpclett.1c01856

    11. [11]

      SUN B, ZHAO N, XU X, JIANG L, LU F, FAN Q L, HUANG W. Synthesis of Fe doped CuS nanoparticles and its application in photothermal/Chemical kinetics combined therapy[J]. Chinese J. Inorg. Chem., 2023,39(4):671-679.  

    12. [12]

      Yao Z, Lai Z Q, Chen C C, Xiao S T, Yang P H. Full-color emissive carbon-dots targeting cell walls of onion for in situ imaging of heavy metal pollution[J]. Analyst, 2019,144(11):3685-3690. doi: 10.1039/C9AN00418A

    13. [13]

      Zhou Y Q, Mintz K J, Sharma S K, Leblanc R M. Carbon dots: Diverse preparation, application, and perspective in surface chemistry[J]. Langmuir, 2019,35:9115-9132. doi: 10.1021/acs.langmuir.9b00595

    14. [14]

      Yue L L, Li H L, Sun Q, Zhang J, Luo X G, Wu F S, Zhu X J. Red-emissive ruthenium containing carbon dots for bioimaging and photodynamic cancer therapy[J]. ACS Appl. Nano Mater., 2020,3(1):869-876. doi: 10.1021/acsanm.9b02394

    15. [15]

      Sahoo P R, Prakash K, Kumar S. Synthesis of an oxadiazole through an indole mediated single step procedure for selective optical recognition of Cu2+ ions[J]. Sens. Actuator B-Chem., 2017,242:299-304. doi: 10.1016/j.snb.2016.11.047

    16. [16]

      Zuo J, Jiang T, Zhao X J, Xiong X H, Xiao S J, Zhu Z Q. Preparation and application of fluorescent carbon dots[J]. J. Nanomater., 2015787862.

    17. [17]

      Sharma R, Ragavan K V, Thakur M S, Raghavarao K S M S. Recent advances in nanoparticle based aptasensors for food contaminants[J]. Biosens. Bioelectron., 2015,74:612-627. doi: 10.1016/j.bios.2015.07.017

    18. [18]

      Zeng Y W, Ma D K, Wang W, Chen J J, Zhou L, Zheng Y Z, Yu K, Huang S M. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids[J]. Appl. Surf. Sci., 2015,342:136-143. doi: 10.1016/j.apsusc.2015.03.029

    19. [19]

      Xu G F, Niu Y S, Yang X C, Jin Z Y, Wang Y, Xu Y H, Niu H T. Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence[J]. Adv. Opt. Mater., 2018,6(24)1800951. doi: 10.1002/adom.201800951

    20. [20]

      Raveendran V, Kizhakayil R N. Fluorescent carbon dots as biosensor, green reductant, and biomarker[J]. ACS Omega, 2021,6:23475-23484. doi: 10.1021/acsomega.1c03481

    21. [21]

      Wang S P, Zhao H R, Yang J L, Dong Y H, Guo S Z, Cheng Q, Li Y, Liu S X. Preparation of multicolor biomass carbon dots based on solvent control and their application in Cr(Ⅵ) detection and advanced anti-counterfeiting[J]. ACS Omega, 2023,8:6550-6558. doi: 10.1021/acsomega.2c06942

    22. [22]

      Mishra S, Kaustav D, Chatterjee S, Sahoo P, Kundu S, Pal M, Bhaumik A, Ghosh C K. Facile and green synthesis of novel fluorescent carbon quantum dots and their silver heterostructure: An in vitro anticancer activity and imaging on colorectal carcinoma[J]. ACS Omega, 2023,8:4566-4577. doi: 10.1021/acsomega.2c04964

    23. [23]

      ZHANG H Q, ZHANG L P, ZHENG K W, YANG G Q, HE S J, DU X J, CHEN F H, LI B. Green synthesis of high stability black rice carbon dots and its application in cell imaging[J]. Chinese J. Inorg. Chem., 2023,39(4):735-745.  

    24. [24]

      LIU X L, LI C Y, XUE J T. Research progress on main active components and pharmacological effects of honeysuckle[J]. Journal of Xinxiang Medical University, 2021,38(10):992-995.  

    25. [25]

      Deng Y H, Zhao D X, Chen X, Wang F, Song H, Shen D Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chem. Commun., 2013,49(51):5751-5753. doi: 10.1039/c3cc42600a

    26. [26]

      Jiang J, He Y, Li S Y, Cui H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement[J]. Chem. Commun., 2012,48:9634-9636. doi: 10.1039/c2cc34612e

    27. [27]

      Li X M, Zhang S L, Kulinich S A, Liu Y L, Zeng H B. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Sci. Rep., 2014,44976. doi: 10.1038/srep04976

    28. [28]

      Li H, Kang Z, Liu Y, Lee S T. Carbon nanodots: Synthesis, properties and applications[J]. J. Mater. Chem., 2012,22(46):24230-24253. doi: 10.1039/c2jm34690g

    29. [29]

      Zu F L, Yan F Y, Bai Z J, Xu J X, Wang Y Y, Huang Y C, Zhou X G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications[J]. Microchim. Acta, 2017,184(7):1899-1914. doi: 10.1007/s00604-017-2318-9

    30. [30]

      Bai Z J, Yan F Y, Xu J X, Zhang J, Wei J F, Luo Y M, Chen L. Dual-channel fluorescence detection of mercuric(Ⅱ) and glutathione by down-and up-conversion fluorescence carbon dots[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2018,205:29-39. doi: 10.1016/j.saa.2018.07.012

    31. [31]

      Shang L, Dong S J. Design of fluorescent assays for cyanide and hydrogenperoxide based on the inner filter effect of metal nanoparticles[J]. Anal. Chem., 2009,81(4):1465-1470. doi: 10.1021/ac802281x

    32. [32]

      Wen X P, Zhao Z H, Zhai S Q, Wang X D, Li Y Q. Stable nitrogen and sulfur co-doped carbon dots for selective folate sensing, in vivo imaging and drug delivery[J]. Diam. Relat. Mat., 2020,105:107791-107801. doi: 10.1016/j.diamond.2020.107791

    33. [33]

      Tian M, Liu Y M, Wang Y T, Zhang Y. Facile synthesis of yellow fluorescent carbon dots for highly sensitive sensing of cobalt ions and biological imaging[J]. Anal. Methods, 2019,11:4077-4083. doi: 10.1039/C9AY01244C

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    15. [15]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    16. [16]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(1)
  • Abstract views(822)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return