Citation: Xiang-Ping WEN, La-Zhen SHEN, Jian-Hui LI, Xiao-Li GAO, Yi-Kun LI, Xin ZHANG, Jia-Yu LÜ. Nitrogen-doped fluorescent carbon dots are used for ultra-sensitive detection of Co2+ and cell imaging[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1471-1480. doi: 10.11862/CJIC.2023.133 shu

Nitrogen-doped fluorescent carbon dots are used for ultra-sensitive detection of Co2+ and cell imaging

  • Corresponding author: Xiang-Ping WEN, wenxiangping99@163.com
  • Received Date: 8 April 2023
    Revised Date: 26 June 2023

Figures(9)

  • For the first time, nitrogen-doped carbon dots (N-CDs) with excellent properties were synthesized by hydrothermal method using honeysuckle as a carbon source and ethylenediamine as a nitrogen source. The prepared N-CDs have abundant functional groups, small particle sizes, good water solubility, excellent fluorescence performance, and high chemical stability. They can emit bright blue fluorescence under ultraviolet light. Using quinine sulfate as a reference, the fluorescence quantum yield of N-CDs was measured to be as high as 15.6%. Under optimal conditions, N-CDs could selectively detect Co2+, and the fluorescence intensity of N-CDs was linearly quenched by Co2+ in a range of 0.5 to 3.6 nmol·L-1, with a detection limit as low as 1.38 nmol·L-1. The quenching mechanism belongs to the internal filtering effect and static quenching. Therefore, an ultra-sensitive Co2+ detection method has been established. To further confirm the feasibility of this sensor, we have also successfully applied it to the precise analysis of Co2+ in tap water samples. In addition, N-CDs have been successfully used for cell imaging and intracellular Co2+ sensing due to their low cytotoxicity and good biocompatibility.
  • 加载中
    1. [1]

      Awual M R, Ismael M, Yaita T. Efficient detection and extraction of cobalt(Ⅱ) from lithium ion batteries and wastewater by novel composite adsorbent[J]. Sens. Actuator B-Chem., 2014,191:9-18. doi: 10.1016/j.snb.2013.09.076

    2. [2]

      Stoica A I, Peltea M, Baiulescu G E, Ionica M. Determination of cobalt in pharmaceutical products[J]. J. Pharm. Biomed. Anal., 2004,36(3):653-656. doi: 10.1016/j.jpba.2004.07.030

    3. [3]

      Barras F, Fontecave M. Cobalt stress in Escherichia coli and Salmonella enterica: Molecular bases for toxicity and resistance[J]. Metallomics, 2011,3(11):1130-1134. doi: 10.1039/c1mt00099c

    4. [4]

      Bano D, Kumar V, Chandra S. Synthesis of highly fluorescent nitrogen-rich carbon quantum dots and their application for the turn-off detection of cobalt(Ⅱ)[J]. Opt. Mater., 2019,92:311-318. doi: 10.1016/j.optmat.2019.04.045

    5. [5]

      Wu Y Y, Liu Y D, Yin J Y. Nitrogen-doped carbon dots synthesized from acrylic acid and ethylenediamine for simple and selective determination of cobalt ions in aqueous media[J]. J. Lumin., 2019,206:169-175. doi: 10.1016/j.jlumin.2018.10.059

    6. [6]

      Zhao C X, Li X, Cheng C S. Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt(Ⅱ) ions and pH sensing[J]. Microchem. J., 2019,147:183-190. doi: 10.1016/j.microc.2019.03.029

    7. [7]

      Chen H, Yuan F, Xu J. Simple and sensitive detection method for cobalt(Ⅱ) in water using CePO4: Tb3+ nanocrystals as fluorescent probes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2013,107:151-155. doi: 10.1016/j.saa.2013.01.020

    8. [8]

      Zi L, Huang Y, Yan Z. Thioglycolic acid-capped CuInS2/ZnS quantum dots as fluorescent probe for cobalt ion detection[J]. J. Lumin., 2014,148:359-363. doi: 10.1016/j.jlumin.2013.12.051

    9. [9]

      Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J. Am. Chem. Soc., 2004,126(40):12736-12737. doi: 10.1021/ja040082h

    10. [10]

      Yu J K, Yong X, Tang Z Y, Yang B, Lu S Y. Theoretical understanding of structure-property relationships in luminescence of carbon dots[J]. J. Phys. Chem. Lett., 2021,12:7671-7687. doi: 10.1021/acs.jpclett.1c01856

    11. [11]

      SUN B, ZHAO N, XU X, JIANG L, LU F, FAN Q L, HUANG W. Synthesis of Fe doped CuS nanoparticles and its application in photothermal/Chemical kinetics combined therapy[J]. Chinese J. Inorg. Chem., 2023,39(4):671-679.  

    12. [12]

      Yao Z, Lai Z Q, Chen C C, Xiao S T, Yang P H. Full-color emissive carbon-dots targeting cell walls of onion for in situ imaging of heavy metal pollution[J]. Analyst, 2019,144(11):3685-3690. doi: 10.1039/C9AN00418A

    13. [13]

      Zhou Y Q, Mintz K J, Sharma S K, Leblanc R M. Carbon dots: Diverse preparation, application, and perspective in surface chemistry[J]. Langmuir, 2019,35:9115-9132. doi: 10.1021/acs.langmuir.9b00595

    14. [14]

      Yue L L, Li H L, Sun Q, Zhang J, Luo X G, Wu F S, Zhu X J. Red-emissive ruthenium containing carbon dots for bioimaging and photodynamic cancer therapy[J]. ACS Appl. Nano Mater., 2020,3(1):869-876. doi: 10.1021/acsanm.9b02394

    15. [15]

      Sahoo P R, Prakash K, Kumar S. Synthesis of an oxadiazole through an indole mediated single step procedure for selective optical recognition of Cu2+ ions[J]. Sens. Actuator B-Chem., 2017,242:299-304. doi: 10.1016/j.snb.2016.11.047

    16. [16]

      Zuo J, Jiang T, Zhao X J, Xiong X H, Xiao S J, Zhu Z Q. Preparation and application of fluorescent carbon dots[J]. J. Nanomater., 2015787862.

    17. [17]

      Sharma R, Ragavan K V, Thakur M S, Raghavarao K S M S. Recent advances in nanoparticle based aptasensors for food contaminants[J]. Biosens. Bioelectron., 2015,74:612-627. doi: 10.1016/j.bios.2015.07.017

    18. [18]

      Zeng Y W, Ma D K, Wang W, Chen J J, Zhou L, Zheng Y Z, Yu K, Huang S M. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids[J]. Appl. Surf. Sci., 2015,342:136-143. doi: 10.1016/j.apsusc.2015.03.029

    19. [19]

      Xu G F, Niu Y S, Yang X C, Jin Z Y, Wang Y, Xu Y H, Niu H T. Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence[J]. Adv. Opt. Mater., 2018,6(24)1800951. doi: 10.1002/adom.201800951

    20. [20]

      Raveendran V, Kizhakayil R N. Fluorescent carbon dots as biosensor, green reductant, and biomarker[J]. ACS Omega, 2021,6:23475-23484. doi: 10.1021/acsomega.1c03481

    21. [21]

      Wang S P, Zhao H R, Yang J L, Dong Y H, Guo S Z, Cheng Q, Li Y, Liu S X. Preparation of multicolor biomass carbon dots based on solvent control and their application in Cr(Ⅵ) detection and advanced anti-counterfeiting[J]. ACS Omega, 2023,8:6550-6558. doi: 10.1021/acsomega.2c06942

    22. [22]

      Mishra S, Kaustav D, Chatterjee S, Sahoo P, Kundu S, Pal M, Bhaumik A, Ghosh C K. Facile and green synthesis of novel fluorescent carbon quantum dots and their silver heterostructure: An in vitro anticancer activity and imaging on colorectal carcinoma[J]. ACS Omega, 2023,8:4566-4577. doi: 10.1021/acsomega.2c04964

    23. [23]

      ZHANG H Q, ZHANG L P, ZHENG K W, YANG G Q, HE S J, DU X J, CHEN F H, LI B. Green synthesis of high stability black rice carbon dots and its application in cell imaging[J]. Chinese J. Inorg. Chem., 2023,39(4):735-745.  

    24. [24]

      LIU X L, LI C Y, XUE J T. Research progress on main active components and pharmacological effects of honeysuckle[J]. Journal of Xinxiang Medical University, 2021,38(10):992-995.  

    25. [25]

      Deng Y H, Zhao D X, Chen X, Wang F, Song H, Shen D Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chem. Commun., 2013,49(51):5751-5753. doi: 10.1039/c3cc42600a

    26. [26]

      Jiang J, He Y, Li S Y, Cui H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement[J]. Chem. Commun., 2012,48:9634-9636. doi: 10.1039/c2cc34612e

    27. [27]

      Li X M, Zhang S L, Kulinich S A, Liu Y L, Zeng H B. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Sci. Rep., 2014,44976. doi: 10.1038/srep04976

    28. [28]

      Li H, Kang Z, Liu Y, Lee S T. Carbon nanodots: Synthesis, properties and applications[J]. J. Mater. Chem., 2012,22(46):24230-24253. doi: 10.1039/c2jm34690g

    29. [29]

      Zu F L, Yan F Y, Bai Z J, Xu J X, Wang Y Y, Huang Y C, Zhou X G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications[J]. Microchim. Acta, 2017,184(7):1899-1914. doi: 10.1007/s00604-017-2318-9

    30. [30]

      Bai Z J, Yan F Y, Xu J X, Zhang J, Wei J F, Luo Y M, Chen L. Dual-channel fluorescence detection of mercuric(Ⅱ) and glutathione by down-and up-conversion fluorescence carbon dots[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2018,205:29-39. doi: 10.1016/j.saa.2018.07.012

    31. [31]

      Shang L, Dong S J. Design of fluorescent assays for cyanide and hydrogenperoxide based on the inner filter effect of metal nanoparticles[J]. Anal. Chem., 2009,81(4):1465-1470. doi: 10.1021/ac802281x

    32. [32]

      Wen X P, Zhao Z H, Zhai S Q, Wang X D, Li Y Q. Stable nitrogen and sulfur co-doped carbon dots for selective folate sensing, in vivo imaging and drug delivery[J]. Diam. Relat. Mat., 2020,105:107791-107801. doi: 10.1016/j.diamond.2020.107791

    33. [33]

      Tian M, Liu Y M, Wang Y T, Zhang Y. Facile synthesis of yellow fluorescent carbon dots for highly sensitive sensing of cobalt ions and biological imaging[J]. Anal. Methods, 2019,11:4077-4083. doi: 10.1039/C9AY01244C

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    10. [10]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(4)
  • Abstract views(2782)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return