Citation: Qi WANG, Jia-Na WU, Wen-Bin WU, Ya-Ling ZHANG, Ji-Xin ZHANG, Jin-Yu YANG, Qian-Hui WANG, Sheng-Ling LI, Cui-Hong ZHANG, Li-Feng DING, Yu-Lan NIU. Medical gauze templated manganese dioxide nanoparticles for methylene blue decontamination[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1729-1737. doi: 10.11862/CJIC.2023.132 shu

Medical gauze templated manganese dioxide nanoparticles for methylene blue decontamination

Figures(8)

  • Using medical gauze (MG) as both template and reductant, MG templated manganese dioxide nanoparticle (MnO2 NPs/MG) was facilely synthesized through an in situ redox reaction. The morphology and composition were characterized. MnO2 NPs were evenly loaded and dispersed on the surface of MG fibers. Combing the adsorption property of MnO2 NPs with ease of operation of MG, MnO2 NPs/MG were further applied to the removal of methylene blue. The results indicated that, by simple soaking and stirring under neutral conditions, the removal efficiency can reach 85.09%, and it can be improved by increasing the ratio of adsorption material dosage to the initial amount of dye. Through isothermal adsorption and kinetic studies, it was proved that the adsorption of methylene blue by MnO2 NPs/MG conformed to Langmuir adsorption isothermal model and pseudo-second-order kinetic model.
  • 加载中
    1. [1]

      Dragan E S, Dinu M V. Spectacular selectivity in the capture of methyl orange by composite anion exchangers with the organic part hosted by DAISOGEL microspheres[J]. ACS Appl. Mater. Interfaces, 2018,10:20499-20511. doi: 10.1021/acsami.8b04498

    2. [2]

      Sharma A K, Priya , Kaith B S, Bajaj S, Bhatia J K, Panchal S, Sharma N, Tanwar V. Efficient capture of eosin yellow and crystal violet with high performance xanthan-acacia hybrid super-adsorbent optimized using response surface methodology[J]. Colloid Surf. B-Biointerfaces, 2019,175:314-323. doi: 10.1016/j.colsurfb.2018.12.017

    3. [3]

      Qi X L, Wei W, Su T, Zhang J F, Dong W. Fabrication of a new polysaccharide-based adsorbent for water purification[J]. Carbohydr. Polym., 2018,195:368-377. doi: 10.1016/j.carbpol.2018.04.112

    4. [4]

      Lyu H H, Gao B, He F, Zimmerman A R, Ding C, Tang J C, Crittenden J C. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue.[J]. Chem. Eng. J., 2018,335:110-119. doi: 10.1016/j.cej.2017.10.130

    5. [5]

      Hu X S, Liang R, Sun G X. Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution.[J]. J. Mater. Chem. A, 2018,6(36):17612-17624. doi: 10.1039/C8TA04722G

    6. [6]

      El-Sharkawy E A, Soliffian A Y, Al-Amer K M. Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation.[J]. J. Colloid Interf. Sci., 2007,310(2):498-508. doi: 10.1016/j.jcis.2007.02.013

    7. [7]

      HUANG J, CHEN H J, FENG X M. Micromotors based on Ni-Mn binary oxide and its application for effective dye adsorption.[J]. Chinese J. Inorg. Chem., 2022,38(7):1411-1420.  

    8. [8]

      Zhang S H, Fan X L, Xue J. A novel magnetic manganese oxide halloysite composite by one-pot synthesis for the removal of methylene blue from aqueous solution.[J]. J. Alloy. Compd., 2023,930167050. doi: 10.1016/j.jallcom.2022.167050

    9. [9]

      Zhang Y, Shen B X, Ahmad M S, Zhou W J, Khalid R R, Ibrahim M, Bokhari A. A three-dimensional active biochar for sintering in steel industry and remove methylene blue by synergistic activation of H3PO4 and ZnCl2.[J]. Fuel, 2023,336127079. doi: 10.1016/j.fuel.2022.127079

    10. [10]

      Huang D Q, Ma J F, Fan C H, Wang K, Zhao W C, Peng M G, Komarneni S. Co-Mn-Fe complex oxide catalysts from layered double hydroxides for decomposition of methylene blue: Role of Mn.[J]. Appl. Clay Sci., 2018,152:230-238. doi: 10.1016/j.clay.2017.11.018

    11. [11]

      Zhang Y B, Liu J J, Du X F, Shao W. Preparation of reusable glass hollow fiber membranes and methylene blue adsorption.[J]. J. Eur. Ceram. Soc., 2019,39(15):4891-4900. doi: 10.1016/j.jeurceramsoc.2019.06.038

    12. [12]

      Ghaemi N, Safari P. Nano-porous SAPO-34 enhanced thin-film nanocomposite polymeric membrane: Simultaneously high water permeation and complete removal of cationic/anionic dyes from water.[J]. J. Hazard. Mater., 2018,358:376-388. doi: 10.1016/j.jhazmat.2018.07.017

    13. [13]

      Jorfi S, Barzegar G, Ahmadi M, Soltani R D C, Haghighifard N A J, Takdastan A, Saeedi R, Abtahi M. Enhanced coagulation-photocatalytic treatment of acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles.[J]. J. Environ. Manage., 2016,177:111-118. doi: 10.1016/j.jenvman.2016.04.005

    14. [14]

      Thenmozhi E, Harshavardhan M, Kamala-Kannan S, Janaki V. Synthesis and characterization of mesoporous silica-MnO2 nanocomposite — An efficient nanocatalyst for methylene blue degradation.[J]. Mater. Lett., 2022,309131367. doi: 10.1016/j.matlet.2021.131367

    15. [15]

      Belousov A S, Suleimanov E V, Parkhacheva A A, Fukina D G, Koryagin A V, Koreleva A V, Zhizhin E V, Gorshkov A P. Regulating of MnO2 photocatalytic activity in degradation of organic dyes.[J]. Solid State Sci., 2022,132106997. doi: 10.1016/j.solidstatesciences.2022.106997

    16. [16]

      Pereira M D, Mendes R P, Bellettini G C, Benetti R M, Elyseu F, Bernardin A M. Photocatalytic discoloration of methylene blue by TiO2 P25 under UV light using ISO 10678 standard as a guide.[J]. J. Photochem. Photobiol. A-Chem., 2023,435114304. doi: 10.1016/j.jphotochem.2022.114304

    17. [17]

      XIA Q, LIAO X G, SHEN H L, ZHENG L, LI G, TIAN T. Co3O4 with different morphologies: Synthesis and performances in activating peroxymonosulfate for methylene blue degradation.[J]. Chinese J. Inorg. Chem., 2022,38(11):2191-2201. doi: 10.11862/CJIC.2022.221 

    18. [18]

      Wang X, Liu X R, Yuan F, Wang B Y, Peng Q A. Selective decolorization of methylene blue from methyl orange in heterogeneous Fenton-like reaction.[J]. Int. J. Environ. Res., 2023,17(1)17. doi: 10.1007/s41742-023-00509-x

    19. [19]

      Ama O M, Khoele K, Anku W W, Ray S S, Osifo P O, Delport D J. Synthesis and application of MnO2/exfoliated graphite electrodes for enhanced photoelectrochemical degradation of methylene blue and Congo red dyes in water.[J]. Electrocatalysis, 2020,11(4):413-421. doi: 10.1007/s12678-020-00601-2

    20. [20]

      Wang L L, Wang L, Shi Y W, Zhao B, Zhang Z H, Ding G H, Zhang H W. Blue TiO2 nanotube electrocatalytic membrane electrode for efficient electrochemical degradation of organic pollutants.[J]. Chemosphere, 2022,306135628. doi: 10.1016/j.chemosphere.2022.135628

    21. [21]

      Yang Y C, Zhu Q L, Peng X W, Sun J J, Li C, Zhang X M, Zhang H, Chen J B, Zhou X F, Zeng H B, Zhang Y L. Hydrogels for the removal of the methylene blue dye from wastewater: A review.[J]. Environ. Chem. Lett., 2022,20:2665-2685. doi: 10.1007/s10311-022-01414-z

    22. [22]

      Uddin M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade.[J]. Chem. Eng. J., 2017,308:438-462. doi: 10.1016/j.cej.2016.09.029

    23. [23]

      Zhou G Y, Luo J M, Liu C B, Chu L, Crittenden J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents.[J]. Water Res., 2018,131:246-254. doi: 10.1016/j.watres.2017.12.067

    24. [24]

      Xue H J, Wang X M, Xu Q, Dhaouadi F, Sellaoui L, Seliem M K, Lamine A B, Belmabrouk H, Bajahzar A, Bonilla-Petriciolet A, Li Z C, Li Q. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis.[J]. Chem. Eng. J., 2022,430132801. doi: 10.1016/j.cej.2021.132801

    25. [25]

      Guo R F, Zhao X J, Li X Y, Liu Z H. Preparation and formation mechanism of graphene oxide supported hollow mesoporous Mg2Si3O6(OH)4 micro-nanospheres with highly efficient methylene blue dye removal from wastewater[J]. Colloid Surf.Physicochem.A-Eng. Asp., 2021,610125936. doi: 10.1016/j.colsurfa.2020.125936

    26. [26]

      Zhang X, Zhang P Y, Wu Z, Zhang L, Zeng G M, Zhou C J. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles.[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2013,435:85-90. doi: 10.1016/j.colsurfa.2012.12.056

    27. [27]

      Li Y W, Yin X L, Huang X H, Tian J, Wu W, Liu X L. The novel and facile preparation of 2D MoS2@C composites for dye adsorption application[J]. Appl. Surf. Sci., 2019,495143626. doi: 10.1016/j.apsusc.2019.143626

    28. [28]

      Zhang Y, Li Y H, Wang M Z, Chen B, Sun Y H, Chen K W, Du Q J, Pi X X, Wang Y Q. Adsorption of methylene blue from aqueous solution using gelatin-based carboxylic acid-functionalized carbon nanotubes@metal-organic framework composite beads.[J]. Nanomaterials, 2022,12(15)2533. doi: 10.3390/nano12152533

    29. [29]

      Gong J Y, Rong S P, Wang X H, Zhou Y F. Critical review of catalytic degradation of formaldehyde via MnO2: From the perspective of process intensification.[J]. J. Clean. Prod., 2022,377134242. doi: 10.1016/j.jclepro.2022.134242

    30. [30]

      Chiam S L, Pung S Y, Yeoh F Y. Recent developments in MnO2-based photocatalysts for organic dye removal: A review.[J]. Environ. Sci. Pollut. Res., 2020,27:5759-5778. doi: 10.1007/s11356-019-07568-8

    31. [31]

      Husnain S M, Asim U, Yaqub A, Shahzad F, Abbsa N. Recent trends of MnO2-derived adsorbents for water treatment: A review.[J]. New J. Chem., 2020,44:6096-6120. doi: 10.1039/C9NJ06392G

    32. [32]

      Zhou L, Huang Y F, Qiu W W, Sun Z X, Liu Z L, Song Z G. Adsorption properties of nano-MnO2-biochar composites for copper in aqueous solution.[J]. Molecules, 2017,22(1)173. doi: 10.3390/molecules22010173

    33. [33]

      Ma J P, Wang C, Xi W K, Zhao Q Y, Wang S Y, Qiu M Q, Wang J J, Wang X K. Removal of radionuclides from aqueous solution by manganese dioxide-based Nanomaterials and mechanism research: A review.[J]. ACS EST Engg., 2021,1:684-705.

    34. [34]

      Meftahi A, Khajavi R, Rashidi A, Sattari M, Yazdanshenas M E, Torabi M. The effects of cotton gauze coating with microbial cellulose.[J]. Cellulose, 2010,17(1):199-204. doi: 10.1007/s10570-009-9377-y

    35. [35]

      Chacon-Patino M L, Blanco-Tirado C, Hinestroza J P, Combariza M Y. Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation.[J]. Green Chem., 2019,15(10):2920-2928.

    36. [36]

      CHENG Y, LIU Y B, ZHAO H Y, NAN X D, FAN X Q, LI S L, DING L F, WANG Q, NIU Y L. Construction of MnO2 nanoparticles mediated UV-visible absorption-fluorescence dual channel sensor and detection of D-penicillamine.[J]. Chinese J. Inorg. Chem., 2023,39(4):617-626.  

    37. [37]

      Hashem A M, Abuzeid H M, Kaus M, Indris S, Ehrenberg H, Mauger A, Julien C M. Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion batteries using lemon juice and citrus peel.[J]. Electrochim. Acta, 2018,262:74-81. doi: 10.1016/j.electacta.2018.01.024

    38. [38]

      Hashem A M, Abdel-Latif A M, Abuzerd H M, Abbas H M, Ehrenberg H, Farag R S, Mauger A, Julien C M. Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping.[J]. J. Alloy. Compd., 2011,509(40):9669-9674. doi: 10.1016/j.jallcom.2011.07.075

    39. [39]

      Tamura H, Oda T, Nagayama M, Furuichi R. Acid-base dissociation of surface hydroxyl groups on manganese dioxide in aqueous solutions.[J]. J. Electrochem. Soc., 1989,136:2782-2786. doi: 10.1149/1.2096286

    40. [40]

      Wang Q, Ma C L, Tang J K, Zhang C H, Ma L H. Eggshell membrane-templated MnO2 nanoparticles: Facile synthesis and tetracycline hydrochloride decontamination.[J]. Nanoscale Res. Lett., 2018,13255. doi: 10.1186/s11671-018-2679-y

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(1)
  • Abstract views(523)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return