Citation: Yu ZHANG, Ying HE, Qing HE, Hui LIU, Jun-Feng MIAO, Ling-Lan LI. Preparation of Ni-Co@C-N catalysts for application to nitroaromatic-azoxybenzene reduction coupling reaction[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1738-1750. doi: 10.11862/CJIC.2023.129 shu

Preparation of Ni-Co@C-N catalysts for application to nitroaromatic-azoxybenzene reduction coupling reaction

Figures(10)

  • The low-cost supported nickel nanoparticle catalysts Ni-Co@C-N were prepared with ZIF-67 as a precursor by pyrolysis and then ethylene glycol reduction. The characterization results of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) indicated the successful preparation of supported nickel nanoparticle catalysts Ni-Co@C-N, Ni and Co nanoparticles uniformly dispersed. Weak bases such as Na2CO3 and low molecular weight PVPk18 dispersants contribute to the loading of Ni nanoparticles. The results of N2 adsorption-desorption indicated that the specific surface areas of the Ni-Co@C-N materials were between 107 and 211 m2·g-1, and the average pore widths were between 7.4 and 11.2 nm. The catalytic performance of the Ni-Co@C-N catalysts for the synthesis of nitroaromatic compounds into the corresponding oxide azobenzene compounds was studied, and the effects of the types of alkali and dispersant on the structure and properties of catalysts were also discussed. The results demonstrated that the alkaline enhancement accelerated the nucleation rate of nanoparticles while increasing the molecular weight of dispersants limited the size growth of nanoparticles. Among them, Ni-Co@C-N-4 prepared by the weak base and low molecular weight dispersant possessed the best catalytic performance, the conversion rate and yield of raw materials reached 92.8% and 89.3% respectively after 30 min of reaction, and the cycle test showed that Ni-Co@C-N-4 had good stability.
  • 加载中
    1. [1]

      HUANG Z A, LIU H, LI L L. Progress in the synthesis of azoxybenzene compound[J]. Chemical Reagents, 2020,422(11):1318-1326. doi: 10.13822/j.cnki.hxsj.2020007689

    2. [2]

      Zeynizadeh B, Gilanizadeh M. Green and highly efficient approach for the reductive coupling of nitroarenes to azoxyarenes using the new mesoporous Fe3O4@SiO2@Co-Zr-Sb catalyst[J]. Res. Chem. Intermed., 2020,46(6):2969-2984. doi: 10.1007/s11164-020-04126-7

    3. [3]

      Han S, Cheng Y, Liu S S, Tao C F, Wang A P, Wei W G, Yu H, Wei Y G. Selective oxidation of anilines to azobenzenes and azoxybenzenes by a molecular Mo oxide catalyst[J]. Angew. Chem. Int. Ed., 2021,60(12):6382-6385. doi: 10.1002/anie.202013940

    4. [4]

      Combita D, Concepción P, Corma A. Gold catalysts for the synthesis of aromatic azocompounds from nitroaromatics in one step[J]. J. Catal., 2014,311:339-349. doi: 10.1016/j.jcat.2013.12.014

    5. [5]

      Zhao J X, Chen C Q, Xing C H, Jiao Z F, Yu M T, Mei B B, Yang J, Zhang B Y, Jiang Z, Qin Y. Selectivity regulation in Au-catalyzed nitroaromatic hydrogenation by anchoring single-site metal oxide promoters[J]. ACS Catal., 2020,10(4):2837-2844. doi: 10.1021/acscatal.9b04855

    6. [6]

      Qadir M I, Scholten J D, Dupont J. Ionic liquid effect: Selective aniline oxidative coupling to azoxybenzene by TiO2[J]. Catal. Sci. Technol., 2015,5(3):1459-1462. doi: 10.1039/C4CY01257G

    7. [7]

      Li J, Song S Y, Long Y, Wu L L, Wang X, Xing Y, Jin R C, Liu X G, Zhang H J. Investigating the hybrid-structure-effect of CeO2-encapsulated Au nanostructures on the transfer coupling of nitrobenzene[J]. Adv. Mater., 2018,30(7)1704416. doi: 10.1002/adma.201704416

    8. [8]

      Chen Y F, Chen J, Lin L J, Chuang G J. Synthesis of azoxybenzenes by reductive dimerization of nitrosobenzene[J]. J. Org. Chem., 2017,82(21):11626-11630. doi: 10.1021/acs.joc.7b01887

    9. [9]

      Liu X, Ye S, Li H Q, Liu Y M, Cao Y, Fan K N. Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles[J]. Catal. Sci. Technol., 2013,3(12):3200-3206. doi: 10.1039/c3cy00533j

    10. [10]

      Zhou B W, Song J L, Wu T B, Liu H Z, Xie C, Yang G Y, Han B X. Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light[J]. Green Chem., 2016,18(13):3852-3857. doi: 10.1039/C6GC00943C

    11. [11]

      Dai Y, Li C, Shen Y B, Lim T B, Xu J, Li Y W, Niemantsverdriet H, Besenbacher F, Lock N, Su R. Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4[J]. Nat. Commun., 2018,9(1)60. doi: 10.1038/s41467-017-02527-8

    12. [12]

      Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Single-atom catalysis of Co oxidation using Pt1/ FeOx[J]. Nat. Chem., 2011,3(8):634-641. doi: 10.1038/nchem.1095

    13. [13]

      Yang F F, Liu D, Zhao Y T, Wang H, Han J Y, Ge Q F, Zhu X L. Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts[J]. ACS Catal., 2018,8(3):1672-1682. doi: 10.1021/acscatal.7b04097

    14. [14]

      Xie Z Y, Zhang T, Zhao Z K. Ni nanoparticles grown on SiO2 supports using a carbon interlayer sacrificial strategy for chemoselective hydrogenation of nitrobenzene and m-cresol[J]. ACS Appl. Nano Mater., 2021,4(9):9353-9360. doi: 10.1021/acsanm.1c01819

    15. [15]

      Manna K, Zhang T, Lin W B. Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations[J]. J. Am. Chem. Soc., 2014,136(18):6566-6569. doi: 10.1021/ja5018267

    16. [16]

      Thacker N C, Lin Z K, Zhang T, Gilhula J C, Abney C W, Lin W B. Robust and porous β-diketiminate-functionalized metal-organic frameworks for earth-abundant-metal-catalyzed C-H amination and hydrogenation[J]. J. Am. Chem. Soc., 2016,138(10):3501-3509. doi: 10.1021/jacs.5b13394

    17. [17]

      Xu G L, Zhang Y M, Wang K H, Fu Y, Du Z Y. Microwave-assisted stille cross-coupling reaction catalysed by in situ formed palladium nanoparticles[J]. J. Chem. Res., 2015,39(7):399-402. doi: 10.3184/174751915X14357494708710

    18. [18]

      Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen R G, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2017,56(24):6937-6941. doi: 10.1002/anie.201702473

    19. [19]

      Cai Q L, Xu Q H, Zhang Y Y, Fu Y H, Chen D L, Zhang J W, Zhu W D, Zhang F M. Boosted catalytic hydrogenation performance using isolated Co sites anchored on nitrogen-incorporated hollow porous carbon[J]. J. Phys. Chem. C, 2021,125(9):5088-5098. doi: 10.1021/acs.jpcc.0c11487

    20. [20]

      Zhong Y C, Liao P S, Kang J W, Liu Q L, Wang S H, Li S S, Liu X L, Li G Q. Locking effect in metal@MOF with superior stability for highly chemoselective Catalysis[J]. J. Am. Chem. Soc., 2023,145(8):4659-4666. doi: 10.1021/jacs.2c12590

    21. [21]

      Zhao J B, Yang W C, Yuan H F, Li X M, Bing W Z, Han L F, Wu K L. ZIF-8@ZIF-67 derived Co/NPHC catalysts for efficient and selective hydrogenation of nitroarenes[J]. Catal. Lett., 2023,153(3):824-835. doi: 10.1007/s10562-022-04016-0

    22. [22]

      Chou K S, Lai Y S. Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids[J]. Mater. Chem. Phys., 2004,83(1):82-88. doi: 10.1016/j.matchemphys.2003.09.026

    23. [23]

      Wang X B, Zhang S H, Zhang Z C. Synthesis of hexagonal nanosized silver sulfide at room temperature[J]. Mater. Chem. Phys., 2008,107(1):9-12. doi: 10.1016/j.matchemphys.2007.07.015

    24. [24]

      Chen D D, Sun Q H, Han C, Guo Y Y, Huang Q, Goddard W A. Enhanced oxygen evolution catalyzed by in-situ formed Fe-doped Ni oxyhydroxides in carbon nanotubes[J]. J. Mater. Chem. A, 2022,10(30):16007-16015. doi: 10.1039/D2TA04042E

    25. [25]

      Qian H F, Zhu M Z, Wu Z K, Jin R C. Quantum sized gold nanoclusters with atomic precision[J]. Acc. Chem. Res., 2012,45(9):1470-1479. doi: 10.1021/ar200331z

    26. [26]

      FANG H Y, ZHAO J C, KANG X Y, LI Y C. Ni/biomass-derived nitrogen-doped porous carbon nanocomposites: Preparation and electrocatalysis for methanol oxidation reaction[J]. Chinese J. Inorg. Chem., 2022,38(10):1959-1969. doi: 10.11862/CJIC.2022.188 

    27. [27]

      Li B Z, Sun K Q, Guo Y B, Tian J P, Xue Y B, Sun D K. Adsorption kinetics of phenol from water on Fe/Ac[J]. Fuel, 2013,110:99-106. doi: 10.1016/j.fuel.2012.10.043

    28. [28]

      Wu N, Zhai M X, Chen F, Zhang X, Guo R H, Hu T P, Ma M M. Nickel nanocrystal/nitrogen-doped carbon composites as efficient and carbon monoxide-resistant electrocatalysts for methanol oxidation reactions[J]. Nanoscale, 2020,12(42):21687-21694. doi: 10.1039/D0NR04822D

    29. [29]

      Chuang T J, Brundle C R, Rice D W. Interpretation of the X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces[J]. Surf. Sci., 1976,59:413-429. doi: 10.1016/0039-6028(76)90026-1

    30. [30]

      Ledeuil J B, Uhart A, Soule S, Allouche J, Dupin J C, Martinez H. New insights into micro/nanoscale combined probes (nanoauger, muxps) to characterize Ag/Au@SiO2 core-shell assemblies[J]. Nanoscale, 2014,6(19):11130-11140. doi: 10.1039/C4NR03211J

    31. [31]

      Zhang Y Z, Song Y Y, Zhao J C, Li S X, Li Y C. Ultrahigh electrocatalytic aactivity and durability of bimetallic Au@Ni core-shell nanoparticles supported on RGO for methanol oxidation reaction in alkaline electrolyte[J]. J. Alloy. Compd., 2020,822(5)153322.

    32. [32]

      Tan S F, Ouyang W M, Ji Y J, Hong Q W. Carbon wrapped bimetallic NiCo nanospheres toward excellent HER and OER performance[J]. J. Alloy. Compd., 2021,889(31)161528.

    33. [33]

      Yang H Y, Chen Z L, Hao W J, Xu H B, Guo Y H, Wu R B. Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon[J]. Appl. Catal. B-Environ., 2019,252:214-221. doi: 10.1016/j.apcatb.2019.04.021

    34. [34]

      Paul B, Vadivel S, Yadav N, Dhar S S. Room temperature catalytic reduction of nitrobenzene to azoxybenzene over one pot synthesised reduced graphene oxide decorated with Ag/ZnO nanocomposite[J]. Catal. Commun., 2019,124:71-75. doi: 10.1016/j.catcom.2019.02.026

    35. [35]

      Bai C H, Li A Q, Yao X F, Liu H L, Li Y W. Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts[J]. Green. Chem., 2016,18(4):1061-1069. doi: 10.1039/C5GC02082D

    36. [36]

      Mercado R, Wahl C, Lu J E, Zhang T J, Lu B Z, Zhang P, Lu J Q, Allen A L, Zhang J Z, Chen S W. Nitrogen-doped porous carbon cages for electrocatalytic reduction of oxygen: Enhanced performance with iron and cobalt dual metal centers[J]. ChemCatChem, 2020,12(12):3230-3239. doi: 10.1002/cctc.201902324

    37. [37]

      Xue H R, Tang J, Gong H, Guo H, Fan X L, Wang T, He J P, Yamauchi Y. Fabrication of PdCo bimetallic nanoparticles anchored on three-dimensional ordered N-doped porous carbon as an efficient catalyst for oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2016,8(32):20766-20771. doi: 10.1021/acsami.6b05856

    38. [38]

      Ferlin F, Cappelletti M, Vivani R, Vivani R, Pica M, Piermatti O, Vaccaro L. Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes[J]. Green Chem., 2019,21(3):614-626. doi: 10.1039/C8GC03513J

    39. [39]

      Chen Z C, Qiu Y T, Wu X X, Ni Y, Shen L, Wu J, Jiang S. Highly selective reduction of nitrobenzenes to azoxybenzenes with a copper catalyst[J]. Tetrahedron Lett., 2018,59(14):1382-1384. doi: 10.1016/j.tetlet.2018.02.064

    40. [40]

      Hou T T, Wang Y H, Zhang J, Li M R, Lu J M, Heggen M, Sievers C, Wang F. Peculiar hydrogenation reactivity of Ni-Niδ+ clusters stabilized by ceria in reducing nitrobenzene to azoxybenzene[J]. J. Catal., 2017,353:107-115. doi: 10.1016/j.jcat.2017.07.004

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

Metrics
  • PDF Downloads(3)
  • Abstract views(537)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return