Citation: Chuan-Tao WANG, Ying-Xian WANG, Li GUO, Zhi-Xiong YANG, Si-Fan ZHOU, Rui DU, Dan-Jun WANG. Construction of Z-scheme CdIn2S4/ZnSnO3 heterostructure for photocatalytic hydrogen production performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1637-1648. doi: 10.11862/CJIC.2023.127 shu

Construction of Z-scheme CdIn2S4/ZnSnO3 heterostructure for photocatalytic hydrogen production performance

  • Corresponding author: Dan-Jun WANG, wangdj761118@163.com
  • Received Date: 7 September 2022
    Revised Date: 15 June 2023

Figures(10)

  • The double shell hollow cube structural ZnSnO3 (ZSO) was prepared by high-temperature calcination with ZnSn(OH)6 as a precursor. Then, the CdIn2S4 (CIS) nanocrystalline was wrapped on the surface of ZSO by a hydrothermal method. Thus CdIn2S4/ZnSnO3 (CIS/ZSO) heterostructures were successfully prepared. The photocatalytic hydrogen evolution reaction (HER) result indicated that the as-prepared 12% CIS/ZSO heterostructure obtained with the molar ratio of CIS to ZSO of 12% exhibited excellent photocatalytic H2-production activity with the hydrogen yield of 1 676.48 μmol·g-1 for 3 h, about 12 times and 8 times of original ZSO and CIS, respectively. The enhanced activity of the ZSO photocatalytic HER was attributed to the successful construction of the CIS/ZSO heterostructure. The formation of the CIS/ZSO heterostructural interface significantly improved the separation efficiency of photogenerated electron/hole pairs and reduced their recombination rate. Furthermore, the possible reaction mechanism was proposed by analyzing the charge transfer pathway.
  • 加载中
    1. [1]

      Bie C B, Wang L X, Yu J G. Challenges for photocatalytic overall water splitting[J]. Chem, 2022,8(6):1567-1574. doi: 10.1016/j.chempr.2022.04.013

    2. [2]

      Villa K, Galán-Mascarós J R, López N, Palomares E. Photocatalytic water splitting: Advantages and challenges[J]. Sustain. Energ. Fuels, 2021,5(18):4560-4569. doi: 10.1039/D1SE00808K

    3. [3]

      Wang L, Wan Y Y, Ding Y J, Wu S K, Zhang Y, Zhang X L, Zhang G Q, Xiong Y J, Wu X J, Yang J L, Xu H X. Conjugated microporous polymer nanosheets for overall water splitting using visible light[J]. Adv. Mater, 2017,29(38)1702428. doi: 10.1002/adma.201702428

    4. [4]

      Dawood F, Anda M, Shafiullah G M. Hydrogen production for energy: An overview[J]. Int. J. Hydrog. Energy, 2020,45(7):3847-3869. doi: 10.1016/j.ijhydene.2019.12.059

    5. [5]

      Stegbauer L, Schwinghammer K, Lotsch B V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chem. Sci, 2014,5(7):2789-2793. doi: 10.1039/C4SC00016A

    6. [6]

      Ruan Q, Luo W J, Xie J J, Wang Y O, Liu X, Bai Z M, Carmalt C J, Tang J W. A nanojunction polymer photoelectrode for efficient charge transport and separation[J]. Angew. Chem. Int. Ed, 2017,56(28):8221-8225. doi: 10.1002/anie.201703372

    7. [7]

      Zhang G G, Lan Z A, Lin L H, Lin S, Wang X C. Overall water splitting by Pt/gC3N4 photocatalysts without using sacrificial agents[J]. Chem. Sci, 2016,7(5):3062-3066. doi: 10.1039/C5SC04572J

    8. [8]

      CAO Z Y, WU Y, GAO J H. Bi9P2O18Cl: Phase transition and hydrogen production by photocatalytic water-splitting[J]. Chinese J. Inorg. Chem, 2022,38(5):969-976.

    9. [9]

      ZU W L, LI L, HUANG J W, SUN Y R, MA F Y, CAO Y Z. Multipathway photoelectron migration and photocatalytic properties of AgIn5S8/carbon quantum dots/ZnIn2S4[J]. Chinese J. Inorg. Chem, 2022,38(6):1059-1072.

    10. [10]

      Mu J L, Teng F, Miao H, Wang Y S, Hu X Y. In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting[J]. Appl. Surf. Sci, 2020,501143974. doi: 10.1016/j.apsusc.2019.143974

    11. [11]

      Ng B J, Putri L K, Tan L L, Pasbakhsh P, Chai S P. All-solid-state Z-scheme photocatalyst with carbon nanotubes as an electron mediator for hydrogen evolution under simulated solar light[J]. Chem. Eng. J, 2017,316:41-49. doi: 10.1016/j.cej.2017.01.054

    12. [12]

      Xia P F, Cao S W, Zhu B C, Liu M J, Shi M S, Yu J G, Zhang Y F. Designing 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angew. Chem. Int. Ed, 2020,59(13):5218-5225. doi: 10.1002/anie.201916012

    13. [13]

      Weng B, Qi M Y, Han C, Tang Z R, Xu Y J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective[J]. ACS Catal, 2019,9:4642-4687. doi: 10.1021/acscatal.9b00313

    14. [14]

      TANG Y P, ZHAO Y F, YANG H Y, LI N. Hydrogen storage capa-bilities of the low-lying Ca2B4 clusters[J]. Chinese J. Inorg. Chem, 2022,38(7):1391-1401.

    15. [15]

      Weng B, Lu K Q, Tang Z C, Chen H M, Xu Y J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis[J]. Nat. Commun, 2018,9(1)1543. doi: 10.1038/s41467-018-04020-2

    16. [16]

      Beshkar F, Amiri O, Salehi Z. Synthesis of ZnSnO3 nanostructures by using novel gelling agents and their application in degradation of textile dye[J]. Sep. Purif. Technol, 2017,184:66-71. doi: 10.1016/j.seppur.2017.04.024

    17. [17]

      Guo R J, Tian R, Shi D L, Li H, Liu H Z. S-doped ZnSnO3 nanoparticles with narrow band gaps for photocatalytic wastewater treatment[J]. ACS Appl. Nano Mater, 2019,2(12):7755-7765. doi: 10.1021/acsanm.9b01804

    18. [18]

      Guo R J, Guo Y P, Duan H N, Li H, Liu H Z. Synthesis of orthorhombic perovskite-type ZnSnO3 single-crystal nanoplates and their application in energy harvesting[J]. ACS Appl. Mater. Interfaces, 2017,9(9):8271-8279. doi: 10.1021/acsami.6b16629

    19. [19]

      Lim W Y, Hong M H, Ho G W. In situ photo-assisted deposition and photocatalysis of ZnIn2S4/transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light[J]. Dalton Trans, 2016,45(2):552-560. doi: 10.1039/C5DT03775A

    20. [20]

      Han C, Yang M Q, Weng B, Xu Y J. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon[J]. Chem. Chem. Phys, 2014,16(32):16891-16903. doi: 10.1039/C4CP02189D

    21. [21]

      PAN L F, YAN X, WANG C L, XIE M, LI Z, AI T, NIU Y H. Preparation and visible light photocatalytic activity of hollow tubular g-C3N4/Ag3PO4 composite catalyst[J]. Chinese J. Inorg. Chem, 2022,38(4):695-704.

    22. [22]

      Luo J H, Lin Z X, Zhao Y, Jiang S J, Song S Q. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle[J]. Chinese J. Catal, 2020,41(1):122-130. doi: 10.1016/S1872-2067(19)63490-X

    23. [23]

      Li H Q, Cui Y M, Hong W S, Xu B L. Enhanced photocatalytic activities of BiOI/ZnSn(OH)6 composites towards the degradation of phenol and photocatalytic H2 production[J]. Chem. Eng. J, 2013,228:1110-1120. doi: 10.1016/j.cej.2013.05.086

    24. [24]

      Wu T, Zhang Q, Hou Y, Wang L, Mao C Y, Zheng S T, Bu X H, Feng P Y. Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response[J]. J. Am. Chem. Soc, 2013,135(28):10250-10253. doi: 10.1021/ja404181c

    25. [25]

      Dhandole L K, Mahadik M A, Chung H S, Chae W C, Cho M, Jang J S. CdIn2S4 chalcogenide/TiO2 nanorod heterostructured photoanode: An advanced material for photoelectrochemical applications[J]. Appl. Surf. Sci, 2019,490:18-29. doi: 10.1016/j.apsusc.2019.05.222

    26. [26]

      Song J P, Yin P F, Mao J, Qiao S Z, Du X W. Catalytically active and chemically inert CdIn2S4 coating on a CdS photoanode for efficient and stable water splitting[J]. Nanoscale, 2017,9(19):6296-6301. doi: 10.1039/C7NR01170A

    27. [27]

      Zhang M Y, Hu Q Y, Ma K, Ding Y, Li C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution[J]. Nano Energy, 2020,73104810. doi: 10.1016/j.nanoen.2020.104810

    28. [28]

      Liao G F, Li C X, Liu S Y, Fang B Z, Yang H M. Emerging frontiers of Z-scheme photocatalytic systems[J]. Trends Chem, 2022,4(2):111-127. doi: 10.1016/j.trechm.2021.11.005

    29. [29]

      Li X Y, Sun H B, Xie Y Y, Liang Y S, Gong X M, Qin P F, Jiang L B, Guo J Y, Liu C, Wu Z B. Principles, synthesis and applications of dual Z-scheme photocatalysts[J]. Coord. Chem. Rev, 2022,467214596. doi: 10.1016/j.ccr.2022.214596

    30. [30]

      Wang S, Zhu B C, Liu M J, Zhang L Y, Yu J G, Zhou M H. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Appl. Catal. B-Environ, 2019,243:19-26. doi: 10.1016/j.apcatb.2018.10.019

    31. [31]

      Dong S Y, Cui L F, Zhang W, Xia L J, Zhou S J, Russell C K, Fan M H, Feng J L, Sun J H. Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater[J]. Chem. Eng. J, 2020,384123279. doi: 10.1016/j.cej.2019.123279

    32. [32]

      Peng Z Y, Jiang Y H, Xiao Y, Xu H Q, Zhang W L, Ni L. CdIn2S4 surface-decorated Ta3N5 core-shell heterostructure for improved spatial charge transfer: In-situ growth, synergistic effect and efficient dual-functional photocatalytic performance[J]. Appl. Surf. Sci, 2019,487:1084-1095. doi: 10.1016/j.apsusc.2019.05.163

    33. [33]

      Li X, Jiang H P, Ma C C, Zhu Z, Song X H, Li X Y, Wang H Q, Huo P W, Chen X B. Construction of a multi-interfacial-electron transfer scheme for efficient CO2 photoreduction: A case study using CdIn2S4 micro-flower spheres modified with Au nanoparticles and reduced graphene oxide[J]. J. Mater. Chem. A, 2020,8(36):18707-18714. doi: 10.1039/D0TA06602H

    34. [34]

      Wu H J, Li C M, Che H N, Hu H, Hu W, Liu C B, Ai J Z, Dong H J. Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance.[J]. Appl. Surf. Sci, 2018,440:308-319. doi: 10.1016/j.apsusc.2018.01.134

    35. [35]

      Chong W K, Ng B J, Kong X Y, Tan L L, Putri L K, Chai S P. Nonmetal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation[J]. Appl. Catal. B-Environ, 2023,325122372. doi: 10.1016/j.apcatb.2023.122372

    36. [36]

      Deng D, Lee J Y. Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage[J]. Chem. Mater, 2008,20(5):1841-1846. doi: 10.1021/cm7030575

    37. [37]

      Zhang Y C, Du Z N, Li K W, Zhang M, Dionysiou D D. High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles[J]. ACS Appl. Mater. Interfaces, 2011,3(5):1528-1537. doi: 10.1021/am200102y

    38. [38]

      Li S S, Wang L, Li Y D, Zhang L H, Wang A X, Xiao N, Gao Y Q, Li N, Song W Y, Ge L, Liu J. Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution[J]. Appl. Catal. B-Environ, 2019,254:145-155. doi: 10.1016/j.apcatb.2019.05.001

    39. [39]

      Dai M, He Z L, Zhang P, Li X, Wang S G. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution[J]. J. Mater. Sci. Technol, 2022,122:231-242. doi: 10.1016/j.jmst.2022.02.014

    40. [40]

      Zhang J Y, Wang Y H, Jin J, Zhang J, Zhang L, Huang F, Yu J G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires[J]. ACS Appl. Mater. Interfaces, 2013,5(20):10317-10324. doi: 10.1021/am403327g

    41. [41]

      Shen H Q, Wang J X, Jiang J H, Luo B F, Mao B D, Shi W D. All-solid-state Z-scheme system of RGO-Cu2O/Bi2O3 for tetracycline degradation under visible-light irradiation[J]. Chem. Eng. J, 2017,313:508-517. doi: 10.1016/j.cej.2016.11.161

    42. [42]

      Li C M, Yu S Y, Wang Y, Han J, Dong H J, Chen G. Fabrication, physicochemical properties and photocatalytic activity of Ag0.68V2O5hierarchical architecture assembled by ultrathin nanosheets[J]. J. Taiwan Inst. Chem. Eng, 2018,87:272-280. doi: 10.1016/j.jtice.2018.03.055

    43. [43]

      Chen F, Li D, Luo B F, Chen M, Shi W D. Two-dimensional hetero-junction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: Enhanced photocatalytic activities for water purification[J]. J. Alloy. Compd, 2017,694:193-200. doi: 10.1016/j.jallcom.2016.09.326

    44. [44]

      Reddy D, Kim E H, Gopannagari M, Ma R, Bhavaniet P, Kumar D, Kim T K. Enhanced photocatalytic hydrogen evolution by integrating dual co-catalysts on heterophase CdS nano-junctions[J]. ACS Sustain. Chem. Eng, 2018,6(10):12835-12844. doi: 10.1021/acssuschemeng.8b02098

    45. [45]

      Zou Y J, Shi J W, Ma D D, Fan Z Y, Niu C M, Wang L Z. Fabrication of g-C3N4/Au/C-TiO2 hollow structure as visible-light-driven Z-scheme photocatalyst with enhanced photocatalytic H2 evolution[J]. ChemCatChem, 2017,9(19):3752-3761. doi: 10.1002/cctc.201700542

    46. [46]

      Chen X B, Shen S H, Guo L J, Mao S S. Semiconductor-based photocatalytic hydrogen generation[J]. Chem. Rev, 2010,110(11):6503-6570. doi: 10.1021/cr1001645

    47. [47]

      Ren Y Y, Li Y, Wu X Y, Wang J L, Zhang G K. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance[J]. Chinese J. Catal, 2021,42(1):69-77. doi: 10.1016/S1872-2067(20)63631-2

    48. [48]

      Xie Q, He W M, Liu S W, Li C H, Zhang J F, Wong P K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling[J]. Nat. Commun, 2020,41(1):140-153.

    49. [49]

      Xu F Y, Meng K, Cheng B, Wang S Y, Xu J S, Yu J G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat. Commun, 2020,11(1)4613. doi: 10.1038/s41467-020-18350-7

    50. [50]

      Muradov N Z, Rustamov M I, Guseinova A D, Bazhutin Y V. Photocatalytic production of hydrogen from H2S solutions over CdS/Pt colloids[J]. React. Kinet. Catal. Lett, 1987,33(2):279-283. doi: 10.1007/BF02128076

    51. [51]

      Wen Y H, Zhang H M, Qian P, Zhou H T, Zhao P, Yi B L, Yang Y S. A study of the Fe(Ⅲ)/Fe(Ⅱ)-triethanolamine complex redox couple for redox flow battery application[J]. Electrochim. Acta, 2006,51(18):3769-3775. doi: 10.1016/j.electacta.2005.10.040

    52. [52]

      Berr M J, Wagner P, Fischbach S, Vaneski A, Schneider J. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation[J]. Appl. Phys. Lett, 2012,100(22)223903. doi: 10.1063/1.4723575

    53. [53]

      Lin W C, Jayakumar J, Chang C L, Ting L Y, Elsayed M H, Abdellah M, Zheng K B, Elewa A M, Lin Y T, Liu J J, Wang W S, Lu C Y, Chou H H. Effect of energy bandgap and sacrificial agents of cyclo-pentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution[J]. Appl. Catal. B-Environ, 2021,298120577. doi: 10.1016/j.apcatb.2021.120577

    54. [54]

      Xia P F, Cao S W, Zhu B C, Liu M j, Shi M S, Yu J G, Zhang Y F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angew. Chem. Int. Ed, 2020,59(13):5218-5225. doi: 10.1002/anie.201916012

    55. [55]

      Jia X M, Han Q F, Liu H Z, Li S Z, Bi H P. A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1-xBrx heterojunction with enhanced visible-light photocatalytic activity[J]. Chem. Eng. J, 2020,399125701. doi: 10.1016/j.cej.2020.125701

    56. [56]

      Wang C T, Dang Y C, Pang X X, Zhang L, Bian Y J, Duan W, Yang C M, Zhen Y Z, Fu F. A novel S-scheme heterojunction based on 0D/3D CeO2/Bi2O2CO3 for the photocatalytic degradation of organic pollutants[J]. New J. Chem, 2022,4615987. doi: 10.1039/D2NJ03192B

    57. [57]

      Wang Y X, Yang C M, Guo L, Yang Z X, Jin B B, Du R, Fu F, Wang D J. Plate-on-plate structured MoS2/Cd0.6Zn0.4S Z-scheme heterostructure with enhanced photocatalytic hydrogen production activity via hole sacrificial agent synchronously strengthen half-reactions.[J]. J. Colloid Interface Sci, 2023,630:341-351. doi: 10.1016/j.jcis.2022.10.053

  • 加载中
    1. [1]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    2. [2]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    3. [3]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    4. [4]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    5. [5]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    6. [6]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    7. [7]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    8. [8]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    9. [9]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    10. [10]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    13. [13]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    14. [14]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    15. [15]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    16. [16]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    17. [17]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    18. [18]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    19. [19]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    20. [20]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

Metrics
  • PDF Downloads(3)
  • Abstract views(638)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return