Citation: Kai-Min WANG, Xiong ZHAO, Xu-Ling BAI, Yan-Qiu DONG, Rui-Feng FAN, Hong-Mei YU, Huai-Jun TANG, Yu-Lu MA. A fluorescence sensor based on Cd(Ⅱ) coordination polymer for recognition of nitrofurantoin[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1587-1596. doi: 10.11862/CJIC.2023.125 shu

A fluorescence sensor based on Cd(Ⅱ) coordination polymer for recognition of nitrofurantoin

Figures(6)

  • A new 2D coordination polymer (CP) [Cd2(L)(dbpy)2(HCOO)(H2O)]•3H2O (1), where H3L=5-((4-carboxybenzyl)amino)isophthalic acid and dbpy=5, 5′-dimethyl-2, 2′-bipyridine, was successfully synthesized by solvothermal method. The structure of CP 1 was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, IR, thermogravimetric analysis, and solid fluorescence spectroscopy. The structure of CP 1 can be simplified into a 3-connected 2D hcb layer with the point symbol of (63). More importantly, CP 1 could selectively and sensitively recognize antibiotic nitrofurantoin in an aqueous medium by fluorescence quenching effect and had a low detection limit (LOD=0.19 μmol•L-1). In addition, the fluorescence quenching mechanism may be caused by the fluorescence resonance energy transfer.
  • 加载中
    1. [1]

      Lei M Y, Ge F Y, Ren S S, Gao X J, Zheng H G. A water-stable Cd-MOF and corresponding MOF@melamine foam composite for detection and removal of antibiotics, explosives, and anions[J]. Sep. Purif. Technol., 2022,286120433. doi: 10.1016/j.seppur.2021.120433

    2. [2]

      Gao X T, Chen N N, Cao M L, Shi Y, Zhang Q F. A water-stable 3D Eu(Ⅲ)-organic framework as a Bi-functional ratiometric luminescent sensor for fast, sensitive and selective detection of ODZ and Hg2+ in aqueous media[J]. Chin. J. Struct. Chem., 2022,412211110.

    3. [3]

      Zhang Q Q, Ying G G, Pan C G, Liu Y S, Zhao J L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ. Sci. Technol., 2015,49(11):6772-6782. doi: 10.1021/acs.est.5b00729

    4. [4]

      Kanzariya D B, Goswami R, Muthukumar D, Pillai R S, Pal T K. Highly luminescent MOF and its in situ fabricated sustainable corn starch gel composite as a fluoro-switchable reversible sensor triggered by antibiotics and oxo-anions[J]. ACS Appl. Mater. Interfaces, 2022,14(43):48658-48674. doi: 10.1021/acsami.2c13571

    5. [5]

      Batt A L, Aga D S. Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination[J]. Anal. Chem., 2005,77(9):2940-2947. doi: 10.1021/ac048512+

    6. [6]

      Bai Y, Zhang M L, Wang B T, Ren Y X, Zhao Y C, Yang H, Yang X G. Four MOFs with isomeric ligands as fluorescent probes for highly selective, sensitive and stable detection of antibiotics in water[J]. CrystEngComm, 2022,24:169-181. doi: 10.1039/D1CE01261D

    7. [7]

      Tian C, Ren X, He M, Chen B B, Hu B. Core-shell magnetic porous organic polymer for magnetic solid-phase extraction of fluoroquinolone antibiotics in honey samples followed by high-performance liquid chromatography with fluorescence detection[J]. J. Sep. Sci., 2022,45(4):874-882. doi: 10.1002/jssc.202100678

    8. [8]

      Viñas P, Balsalobre N, López-Erroz C, Hernández-Córdoba M. Liquid chromatography with ultraviolet absorbance detection for the analysis of tetracycline residues in honey[J]. J. Chromatogr. A, 2004,1022:125-129. doi: 10.1016/j.chroma.2003.09.066

    9. [9]

      Paul P, Reynaert J, Griend C S D, Adams E, Schepdael A V. Development and validation of a CE method for the determination of tetracyclines with capacitively coupled contactless conductivity detection[J]. Chromatographia, 2019,82:1395-1403. doi: 10.1007/s10337-019-03755-4

    10. [10]

      Wu X Y, Xu Z Q, Huang Z, Shao C Y. Large volume sample stacking of cationic tetracycline antibiotics toward 10 ppb level analysis by capillary electrophoresis with UV detection[J]. Electrophoresis, 2016,37(22):2963-2969. doi: 10.1002/elps.201600189

    11. [11]

      Yu C X, Jiang W, Wang K Z, Liang A P, Song J G, Zhou Y L, Sun X Q, Liu L L. Luminescent two-dimensional metal-organic framework nanosheets with large π-conjugated system: Design, synthesis, and detection of anti-inflammatory drugs and pesticides[J]. Inorg. Chem., 2022,61(2):982-991. doi: 10.1021/acs.inorgchem.1c03040

    12. [12]

      Li X, Zhang S, Zhang L, Yang Y, Zhang K, Cai Y C, Xu Y, Gai Y L, Xiong K C. Viologen-based cationic metal-organic framework for antibiotics detection and MnO4- removal in water[J]. Cryst. Growth Des., 2022,22(7):3991-3997. doi: 10.1021/acs.cgd.2c00170

    13. [13]

      Zhao Y, Jing J, Yan N, Han M L, Yang G P, Ma L F. Different benzendicarboxylate-directed structural variations and properties of four new porous Cd(Ⅱ)-pyridyl-triazole coordination polymers[J]. Front. Chem., 2020,8616468. doi: 10.3389/fchem.2020.616468

    14. [14]

      Su P C, Zhang A R, Yu L, Ge H W, Wang N, Huang S Y, Ai Y J, Wang X K, Wang S H. Dual-functional UiO-type metal-organic frameworks for the sensitive sensing and effective removal of nitrofurans from water[J]. Sens. Actuator B-Chem., 2022,350130865. doi: 10.1016/j.snb.2021.130865

    15. [15]

      Benzaqui M, Wahiduzzaman M, Zhao H, Hasan M R, Steenhaut T, Saad A, Marrot J, Normand P, Greneche J M, Heymans N, Weireld G D, Tissot A, Shepard W, Filinchuk Y, Hermans S, Carn F, Manlankowska M, Tellez C, Coronas J, Maurin G, Steunou N, Serre C. A robust eco-compatible microporous iron coordination polymer for CO2 capture[J]. J. Mater. Chem. A, 2022,10:8535-8545. doi: 10.1039/D1TA10385G

    16. [16]

      Chen X, Qiao Z W, Hou B, Jiang H, Gong W, Dong J Q, Li H Y, Cui Y, Liu Y. Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions[J]. Nano Res., 2021,14:466-472. doi: 10.1007/s12274-020-2905-7

    17. [17]

      SHI M F, LI L F, YANG L Z, YU H M, XIAO M, TANG H J, WANG K M. Synthesis and photocatalytic study of two semi-conductive Co(Ⅱ) coordination polymers[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022,61(6):74-80.  

    18. [18]

      Zhao J J, Liu P Y, Dong Z P, Liu Z L, Wang Y Q. Eu(Ⅲ)-organic framework as a multi-responsive photoluminescence sensor for efficient detection of 1-naphthol, Fe3+ and MnO4- in water[J]. Inorg. Chim. Acta, 2020,511119843. doi: 10.1016/j.ica.2020.119843

    19. [19]

      Liang J Y, Zulkifli M Y B, Choy S, Li Y, Gao M, Kong B, Yun J, Liang K. Metal-organic framework-plant nano biohybrids as living sensors for on-site environmental pollutant detection[J]. Environ. Sci. Technol., 2020,54(18):11356-11364. doi: 10.1021/acs.est.0c04688

    20. [20]

      WANG K M, GUO J R, ZHANG Q, TANG H J, WANG Y N, MA Y L. Synthesis, structure and fluorescence properties of pyridonium amphoteric Cd(Ⅱ) complexes containing charge separation centers[J]. Journal of Yunnan University (Natural Sciences Edition), 2022,44(3):576-584.  

    21. [21]

      Gao Y F, Zhang X Q, Sun W, Liu Z L. A robust microporous metal-organic framework as a highly selective and sensitive, instantaneous and colorimetric sensor for Eu3+ ions[J]. Dalton Trans., 2015,44(4):1845-1849. doi: 10.1039/C4DT02752C

    22. [22]

      Xu X Y, Bing Y. A fluorescent wearable platform for sweat Cl- analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs[J]. J. Mater. Chem. C, 2018,6(7):1863-1869. doi: 10.1039/C7TC05204A

    23. [23]

      Kondo A, Noro S I, Kajiro H, Kanoh H. Structure- and phase-transformable coordination polymers/metal complexes with fluorinated anions[J]. Coord. Chem. Rev., 2022,471214728. doi: 10.1016/j.ccr.2022.214728

    24. [24]

      Gurtovyi R I, Gavrish S P, Tsymbal L V, Apostu M O, Cazacu M, Shova S, Lampeka Y D. 2D coordination polymers and ionic complexes of the nickel(Ⅱ) and zinc(Ⅱ) cyclam cations with trigonal carboxylate linkers based on triazine core. Crystal structures, supramolecular catenation and spectral characterization[J]. Polyhedron, 2022,221115870. doi: 10.1016/j.poly.2022.115870

    25. [25]

      WANG K M, SHI M F, LI L F, FAN B M, SUN W Q, MA Y L. Construction of water stable Zn(Ⅱ) metal-organic framework iron ion fluorescence probe with mixed ligand[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023,62(1):142-148. doi: 10.13471/j.cnki.acta.snus.2022c010

    26. [26]

      Sun S L, Sun X Y, Sun Q, Gao E Q. Highly efficient fluorescent chemosensor for nitro antibiotic detection based on luminescent coordination polymers with 2, 6-di(4-carboxyphenyl)pyrazine[J]. CrystEngComm, 2021,23(17):3167-3174. doi: 10.1039/D1CE00245G

    27. [27]

      WANG K M, LI L F, SHI M F, YE Y Q, WANG Y N, GUO J R, TANG H J, MA Y L. Crystal structure of Eu(Ⅲ) coordination polymer based on zwitterionic ligand and detection of furacilin[J]. Chinese J. Inorg. Chem., 2022,38(9):1843-1852.  

    28. [28]

      Su Y Q, Fu L S, Cui G H. Two chemically robust Cd(Ⅱ)-frameworks for efficient sensing of levofloxacin, benzaldehyde, and Fe3+ ions[J]. Dalton Trans., 2021,50(43):15743-15753. doi: 10.1039/D1DT03205D

    29. [29]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    30. [30]

      Yu X Y, Dong W W, Han H M, Zhao J, Li D S. A water-stable Zn(Ⅱ) coordination polymer as fluorescent sensor for selective and sensitive detection of antibiotics and Fe3+[J]. J. Solid State Chem., 2021,296122032. doi: 10.1016/j.jssc.2021.122032

    31. [31]

      Wang K M, Yang L Z, Li L F, Dong X Y, Wang Z L, Tang H J, Sun W Q, Ma Y L. A water-stable zwitterionic Cd(Ⅱ) coordination polymer as fluorescent sensor for the detection of oxo-anions and dimetridazole in milk[J]. Arab. J. Chem., 2022,15(11)104295. doi: 10.1016/j.arabjc.2022.104295

    32. [32]

      Zeng N N, Ren L, Cui G H. Ultrasensitive fluorescence detection of norfloxacin in aqueous medium employing a 2D Zn(Ⅱ)-based coordination polymer[J]. CrystEngComm, 2022,24(5):931-935.

    33. [33]

      Yang Y X, Guo Y W, Xia S Y, Ma X N, Wu X X. Metal-organic framework sensors based on triazole carboxylic acid ligands for ion sensing and dye adsorption[J]. J. Solid State Chem., 2022,331123113.

    34. [34]

      Wang K M, Yang L Z, Li L F, Ma Y L, Guo J R, Wang Z L, Tang H J, Wang Y N, Zhou J. Highly sensitive and rapid fluorescence detection of chlortetracycline in milk using a water- and pH-stable Zn(Ⅱ) coordination polymer derived from zwitterionic and N-donor ligands[J]. J. Solid State Chem., 2022,316123606.

    35. [35]

      Wang X M, Liu C, Wang M, Zhou X H, YouY J, Xiao H P. A selective fluorescence turn-on sensing coordination polymer for antibiotic aztreonam[J]. Chem. Commun., 2022,58(29):4667-4670.

    36. [36]

      Ye Y, Ge B D, Meng X Y, Liu Y H, Wang S, Song X W, Liang Z Q. An yttrium-organic framework based on a hexagonal prism second building unit for luminescent sensing of antibiotics and highly effective CO2 fixation[J]. Inorg. Chem. Front., 2022,9(2):391-400.

    37. [37]

      Zhu G S, Cheng S L, Zhou Z D, Du B, Shen Y Y, Yu B Y. Bisligand-coordinated cadmium organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions[J]. Polyhedron, 2022,217115759.

    38. [38]

      Wang K M, Li L F, Yang L Z, Guo J R, Wang Z L, Tang H J, Ma Y L. A water-stable zwitterionic Zn(Ⅱ) coordination polymer as a luminescent sensor for the nitrofurazone antibiotic in milk[J]. Polyhedron, 2022,226116092.

    39. [39]

      Niu M Y, Yang X P, Ma Y N, Wang C R, Hao W X, Shi D L, Schipper D. Construction of an octanuclear Zn(Ⅱ)-Yb(Ⅲ) Schiff base complex for the NIR luminescent sensing of Nitrofuran antibiotics[J]. Chin. J. Chem., 2021,39(8):2083-2087.

    40. [40]

      Xu S, Shi J J, Ding B, Liu Z Y, Wang X G, Zhao X J, Yang E C. A heterometallic sodium(Ⅰ)-europium(Ⅲ)-organic layer exhibiting dual-responsive luminescent sensing for nitrofuran antibiotics, Cr2O72- and MnO4- anions[J]. Dalton Trans., 2019,48(5):1823-1834.

    41. [41]

      Ma Y N, Yang X P, Shi D L, Niu M Y, Schipper D. Construction of a 18-Metal neodymium(Ⅲ) nanoring with NIR luminescent sensing to antibiotics[J]. Inorg. Chem., 2020,59(23):17608-17613.

    42. [42]

      Zhang Y J, Yang J D, Zhao D S, Liu Z J, Li D C, Fan L M, Hu T P. Two cadmium(Ⅱ) coordination polymers as luminescent sensors for the detection of nitrofuran/nitroimidazole antibiotics[J]. CrystEngComm, 2019,21(41):6130-6135.

    43. [43]

      Yang H W, Xu P, Ding B, Liu Z Y, Zhao X J, Yang E C. A highly stable luminescent Eu-MOF exhibiting efficient response to nitrofuran antibiotics through the inner filter effect and photoinduced electron transfer[J]. Eur. J. Inorg. Chem., 2019(48):5077-5084.

    44. [44]

      Xu N, Zhang Q H, Zhang G A. A carbazole-functionalized metal-organic framework for efficient detection of antibiotics, pesticides and nitroaromatic compounds[J]. Dalton Trans., 2019,48(8):2683-2691.

    45. [45]

      Wang Y, Xu J, Wang R Z, Liu H, Yu S S, Xing L B. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,279(15)121402.

    46. [46]

      Zhang L Q, Wang X W, Gu L, Yu Y H, Gao J S. Three pairs of luminescent coordination polymers based on Co and Cd clusters for the detection of antibiotics, pesticides and chiral nitro aromatic compounds[J]. RSC Adv., 2020,10(16):9476-9485.

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    3. [3]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    4. [4]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    9. [9]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    10. [10]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    11. [11]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    12. [12]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    15. [15]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    16. [16]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    17. [17]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    18. [18]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    19. [19]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

    20. [20]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

Metrics
  • PDF Downloads(1)
  • Abstract views(739)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return