Citation: Tao LI, Li WANG, You-Fu XIA, Li-Li WANG, Yue SHEN. Two-dimensional covalent organic frameworks based on Ni-Salphen: Preparation and capacitive performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1691-1698. doi: 10.11862/CJIC.2023.123 shu

Two-dimensional covalent organic frameworks based on Ni-Salphen: Preparation and capacitive performance

  • Corresponding author: Tao LI, 2012020003@bzuu.edu.cn
  • Received Date: 22 March 2023
    Revised Date: 8 June 2023

Figures(10)

  • To develop covalent organic frameworks supercapacitors electrode materials, functional designs is important practical significance to enhance electrochemical performance. Two-dimensional covalent organic frameworks (COFs) based on Ni-Salphen (Ni-Salphen-COF) has been constructed by the reaction of 2, 3, 6, 7, 10, 11-hexaaminotri-phenylene (HATP) and 4, 6-dihydroxy-5-methyl-1, 3-diformyl benzene (DMDB). Structures, morphology, and electro-chemical properties of the Ni-Salphen-COF were characterized via a series of methods. The three-electrode test results suggest that Ni-Salphen-COF showed excellent specific capacitance of 531 F·g-1 and good cycle stability (capacity retention of 89% after 10 000 cycles) at the current density of 1 A·g-1. Meanwhile, Ni-Salphen-COF//AC (AC: activated carbon) in the two-electrode system displayed the specific capacitance of 176 F·g-1 at 1 A·g-1, and the highest energy density was up to 55 Wh·kg-1 at a power density of 900 W·kg-1. Compared to Salphen-COF with-out Ni, Ni-Salphen-COF showed a high specific capacitance. The electrochemical performance could be attributed to Ni-Salphen units, increasing in electrical conductivity, redox-active, and charge transfer activity.
  • 加载中
    1. [1]

      Song Y P, Sun Q, Aguila B, Aguila B, Ma S Q. Covalent organic frameworks: Opportunities of covalent organic frameworks for advanced applications[J]. Adv. Sci., 2019,6(2)1970011. doi: 10.1002/advs.201970011

    2. [2]

      Alahakoon S B, Diwakara S D, Thompson C M, Smaldone R A. Supra-molecular design in 2D covalent organic frameworks[J]. Chem. Soc. Rev., 2020,49:1344-1356. doi: 10.1039/C9CS00884E

    3. [3]

      Li B J, Wang Z T, Gao Z Z, Suo J Q, Xue M, Yan Y S, Valtchev V, Qiu S L, Fang Q R. Self-standing covalent organic framework membranes for H2/CO2 separation[J]. Adv. Funct. Mater., 2023,33(16)2300219. doi: 10.1002/adfm.202300219

    4. [4]

      Zheng L, Song Q, Tan P, Wang S T, Liu X Q, Sun L B. Endowing covalent organic frameworks with photoresponsive active sites for controllable propylene adsorption[J]. Small, 2023,19(15)2207291. doi: 10.1002/smll.202207291

    5. [5]

      Chen B H, Xie H L, Shen L G, Xu Y C, Zhang M J, Zhou M Z, Li B S, Li R J, Lin H J. Covalent organic frameworks: The rising-star platforms for the design of CO2 separation membranes[J]. Small, 2023,192207313. doi: 10.1002/smll.202207313

    6. [6]

      An S H, Li X W, Shang S S, Xu T, Yang S, Cui C X, Peng C J, Liu H L, Xu Q, Jiang Z, Hu J. One-dimensional covalent organic frameworks for the 2e- oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2023,62(14)e202218742. doi: 10.1002/anie.202218742

    7. [7]

      Li S X, Ma R, Xu S Q, Zheng T Y, Wang H P, Fu G G, Yang H Y, Hou Y, Liao Z Q, Wu B Z, Feng X L, Wu L Z, Li X B, Zhang T. Two-dimensional benzobisthiazole-vinylene-linked covalent organic frameworks outperform one-dimensional counterparts in photocatalysis[J]. ACS Catal., 2023,13(2):1089-1096. doi: 10.1021/acscatal.2c05023

    8. [8]

      Zou W W, Jiang G X, Zhang W F, Zhang L H, Cui Z M, Song H Y, Liang Z X, Du L. Hierarchically macro-microporous covalent organic frameworks for efficient proton conduction[J]. Adv. Funct. Mater., 2023,33(18)2213642. doi: 10.1002/adfm.202213642

    9. [9]

      Skorjanc T, Shetty D, Valant M. Covalent organic polymers and frameworks for fluorescence-based sensors[J]. ACS Sens., 2021,6(4):1461-1481. doi: 10.1021/acssensors.1c00183

    10. [10]

      Chen S F, Liang L J, Li Y Y, Wang D Y, Lu J G, Zhan X L, Hou Y, Zhang Q H, Lu J. Brain capillary-inspired self-assembled covalent organic framework membrane for sodium-sulfur battery separator[J]. Energy Mater., 2023,13(11)2204334. doi: 10.1002/aenm.202204334

    11. [11]

      Hu B, Xu J, Fan Z J, Xu C, Han S C, Zhang J X, Ma L B, Ding B, Zhuang Z C, Kang Q, Zhang X G. Covalent organic framework based lithium-sulfur batteries: materials, interfaces, and solid-state electrolytes[J]. Adv. Energy Mater., 2023,13(10)2203540. doi: 10.1002/aenm.202203540

    12. [12]

      Dai Y Y, Liu C L, Bai Y, Kong Q Q, Pang H. Framework materials for supercapacitors[J]. Nanotechnol. Rev., 2022,11(1):1005-1046. doi: 10.1515/ntrev-2022-0042

    13. [13]

      Yue Y, Li H Y, Chen H Z, Huang N. Piperazine-linked covalent organic frameworks with high electrical conductivity[J]. J. Am. Chem. Soc., 2022,144(7):2873-2878. doi: 10.1021/jacs.1c13012

    14. [14]

      Li H, Chang J H, Li S S, Guan X Y, Li D H, Li C Y, Tang L X, Xue M, Yan Y S, Valtchev V, Qiu S L, Fang Q R. Three-dimensional tetrathiafulvalene-based covalent organic frameworks for tunable electrical conductivity[J]. J. Am. Chem. Soc., 2019,141(34):13324-13329. doi: 10.1021/jacs.9b06908

    15. [15]

      Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal H S, Karak S, Kurungot S, Banerjee R. Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors[J]. J. Am. Chem. Soc., 2018,140(35):10941-10945. doi: 10.1021/jacs.8b06460

    16. [16]

      Li M, Liu J J, Zhang T, Song X Y, Chen W H, Chen L. 2D redoxactive covalent organic frameworks for supercapacitors: Design, synthesis, and challenges[J]. Small, 2021,17(22)2005073. doi: 10.1002/smll.202005073

    17. [17]

      El-Mahdy A F M, Mohamed M G, Mansoure T H, Yu H H, Chen T, Kuo S W. Ultrastable tetraphenyl-p-phenylenediamine-based covalent organic frameworks as platforms for high-performance electrochemical supercapacitors[J]. Chem. Commun., 2019,55:14890-14893. doi: 10.1039/C9CC08107K

    18. [18]

      Pakulski D, Montes-García V, Gorczyński A, Czepa W, Chudziak T, Samorì P, Ciesielski A. Thiol-decorated covalent organic frameworks as multifunctional materials for high-performance supercapacitors and heterogeneous catalysis[J]. J. Mater. Chem. A, 2022,10:16685-16696. doi: 10.1039/D2TA03867F

    19. [19]

      An N, Guo Z, Xin J, He Y Y, Xie K F, Sun D M, Dong X Y, Hu Z G. Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors[J]. J. Mater. Chem. A, 2021,9:16824-16833. doi: 10.1039/D1TA04313G

    20. [20]

      Xu Z J, Liu Y N, Wu Z T, Wang R T, Wang Q F, Li T, Zhang J H, Cheng J, Yang Z H, Chen S F, Miao M H, Zhang D H. Construction of extensible and flexible supercapacitors from covalent organic framework composite membrane electrode[J]. Chem. Eng. J., 2020,387124071. doi: 10.1016/j.cej.2020.124071

    21. [21]

      Karak S, Kandambeth S, Biswal B P, Sasmal H S, Kumar S, Pachfule P, Banerjee R. Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process[J]. J. Am. Chem. Soc., 2017,139:1856-1862. doi: 10.1021/jacs.6b08815

    22. [22]

      Jin J, Zheng Y, Huang S Z, Sun P P, Srikanth N, Kong L B, Yan Q Y, Zhou K. Directly anchoring 2D NiCo metal-organic frameworks on few-layer black phosphorus for advanced lithium-ion batteries[J]. J. Mater. Chem. A, 2019,7:783-790. doi: 10.1039/C8TA09327J

    23. [23]

      Cheng Y, Guo X W, Xue Y D, Pang H. Controllable synthesis of a flower-like superstructure of nickel metal-organic phosphate and its derivatives for supercapacitors[J]. Appl. Mater. Today, 2021,23101048. doi: 10.1016/j.apmt.2021.101048

    24. [24]

      Zheng S S, Sun Y, Xue H G, Braunstein P, Pang H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance[J]. Natl. Sci. Rev., 2022,9(7)nwab197. doi: 10.1093/nsr/nwab197

    25. [25]

      Laheäär A, Przygocki P, Abbas Q, Béguin F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors[J]. Electrochem. Commun., 2015,60:21-25. doi: 10.1016/j.elecom.2015.07.022

    26. [26]

      Chandra S, Chowdhury D R, Addicoat M, Heine T, Paul A, Banerjee R. Molecular level control of the capacitance of two-dimensional covalent organic frameworks: Role of hydrogen bonding in energy storage materials[J]. Chem. Mater., 2017,29:2074-2080. doi: 10.1021/acs.chemmater.6b04178

    27. [27]

      Khattak A M, Ghazi Z A, Liang B, Khan N A, Iqbal A, Li L S, Tang Z Y. A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage[J]. J. Mater. Chem. A, 2016,4:16312-16317. doi: 10.1039/C6TA05784E

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

Metrics
  • PDF Downloads(4)
  • Abstract views(377)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return