Citation: Guo-Ling LI, Meng-Meng WANG, Xin-Xue TANG, Ran ZHANG, Zhong-Hai NI. Synthesis, crystal structure, and magnetic properties of a cyanide-bridged Fe4Ni2 hexa-nuclear complex based on tricyanideferrate(Ⅲ)[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1564-1570. doi: 10.11862/CJIC.2023.119 shu

Synthesis, crystal structure, and magnetic properties of a cyanide-bridged Fe4Ni2 hexa-nuclear complex based on tricyanideferrate(Ⅲ)

Figures(4)

  • A cyanide-bridged Fe4Ni2 hexa-nuclear complex [Fe4Ni2(Tp)4(CN)12(dpzpen)2]·12H2O·3CH3OH (1) (Tp=hydrotris(pyrazolyl)borate, dpzpen=2, 9-di(pyrazo-1-yl)-1, 10-phenanthroline) was prepared by the reaction of tricyanideferrate(Ⅲ) (Bu4N)[Fe(Tp)(CN)3] with ligand dpzpen and Ni salt. Structural analysis indicates that two [Fe(Tp)(CN)3]- units bridge two [Ni(dpzpen)]2+ fragments forming an approximately rhombic Fe2Ni2 skeleton with another two [Fe(Tp)(CN)3]- hanging outside the rhombus through cyanide bridges. Magnetic studies show that complex 1 exhibits ferromagnetic interaction between Fe and Ni through cyanide groups. More significantly, the magnetic-structural relationship of complex 1 was established by fitting the temperature dependence of magnetic susceptibility based on its structural model. The best-fitting parameters J3d (15.73 cm-1) > J2d (3.53 cm-1) ≈ J1d (3.50 cm-1) were in good agreement with the variation tendency of corresponding Ni—N bond lengths and Ni—N≡C angles (J3d: 0.206 5 nm, 169.8°; J2d: 0.206 2 nm, 163.1°; J1d: 0.198 7 nm, 161.6°), indicating a shorter Ni—N bond length and a larger Ni—N≡C angle in favor of ferromagnetic interaction for cyanide-bridged Fe-Ni system.
  • 加载中
    1. [1]

      YANG R, ZHANG S Y, WANG R G, MENG Y S, LIU T, ZHU Y Y. Synthesis and magnetic properties of mononuclear cobalt(Ⅱ) spin crossover complexes from complementary terpyridine ligand pairing[J]. Chinese J. Inorg. Chem, 2022,38(8):1477-1486.  

    2. [2]

      LIU D, ZHAO L, SHAO Z, MENG Y S, LIU T. A 2D cyano-bridged W-Co coordination network exhibiting reversible thermal-induced charge transfer[J]. Chinese J. Inorg. Chem., 2023,39(2):367-374.  

    3. [3]

      Nihei M, Yanai Y, Hsu I J, Sekine Y, Oshio H. A hydrogen-bonded cyanide-bridged[Co2Fe2] square complex exhibiting a three-step spin transition[J]. Angew. Chem. Int. Ed., 2017,56(2):591-594. doi: 10.1002/anie.201610268

    4. [4]

      Zhang Y, Malik U P, Quiggins B, Nguyen H, Beedle C C, Kovalev A E, Clérac R, Hill S, Bythell B J, Holmes S M. Structure-property relationships in tricyanoferrate(Ⅲ) building blocks and trinuclear cyanide-bridged complexes[J]. Eur. J. Inorg. Chem., 2016(15/16):2432-2442.

    5. [5]

      Li G L, Chen W Q, Zhang Z L, Ni Z H, Yu M M, Kou H Z. Syntheses, crystal structures and magnetic properties of three cyanide-bridged iron(Ⅲ)-manganese(Ⅱ) binuclear complexes based on dicyanideferrite(Ⅲ) building blocks[J]. Transition Met. Chem., 2012,37:469-474. doi: 10.1007/s11243-012-9611-6

    6. [6]

      Zhang Y Z, Gao S, Wang Z M, Su G, Sun H L, Pan F. Rational synthesis and magnetic properties of a family of low-dimensional heterometallic Cr-Mn complexes based on the versatile building block[Cr(2, 2'-bipyridine)(CN)4]-[J]. Inorg. Chem., 2005,44:4534-4545. doi: 10.1021/ic0484194

    7. [7]

      Erkarslan U, Oylumluoglu G, Coban M B, Ö ztürk E, Kara H. Cyanide-bridged trinuclear Mn-Fe assembly: Crystal structure, magnetic and photoluminescence behavior[J]. Inorg. Chem. Acta, 2016,445:57-61. doi: 10.1016/j.ica.2016.02.010

    8. [8]

      Zhao X H, Shao D, Chen J T, Liu M, Li T, Yang J, Zhang Y Z. Spin and valence isomerism in cyanide-bridged {Fe2M} (M=Fe and Co) clusters[J]. Dalton Trans., 2021,50:9768-9774. doi: 10.1039/D1DT01298C

    9. [9]

      Meng Y S, Sato O, Liu T. Manipulating metal-to-metal charge transfer for materials with switchable functionality[J]. Angew. Chem. Int. Ed., 2018,57(38):12216-12226. doi: 10.1002/anie.201804557

    10. [10]

      Shaikh K, Santra A, Chattopadhyay S. Use of hexacyanometalates as efficient linkers to assemble manganese(Ⅲ)-salen moieties forming cyanide bridged polynuclear complexes: A review[J]. Polyhedron, 2022,224115977. doi: 10.1016/j.poly.2022.115977

    11. [11]

      Mondal A, Li Y, Chamoreau L M, Seuleiman M, Rechignat L, Bousseksou A, Boillot M L, Lescouë zec R. Photo- and thermo- induced spin crossover in a cyanide-bridged {Mo2Fe2} rhombus molecule[J]. Chem. Commun., 2014,50:2893-2895. doi: 10.1039/C3CC49164A

    12. [12]

      Pinkowicz D, Southerland H, Wang X Y, Dunbar K R. Record antiferromagnetic coupling for a 3d/4d cyanide-bridged compound[J]. J. Am. Chem. Soc., 2014,136(28):9922-9924. doi: 10.1021/ja5044352

    13. [13]

      Li G L, Zhang L F, Ni Z H, Kou H Z, Cui A L. Cyanide-Bridged CrMn binuclear complexes based on [Mn(phen)2]2+ and dicyanidechromate(Ⅲ) building blocks: Syntheses, crystal structures, and magnetic properties[J]. Bull. Korean Chem. Soc., 2012,33(5):1675-1680. doi: 10.5012/bkcs.2012.33.5.1675

    14. [14]

      Kang S, Zheng H, Liu T, Hamachi K, Kanegawa S, Sugimoto K, Shiota Y, Hayami S, Mito M, Nakamura T, Nakano M, Baker M L, Nojiri H, Yoshizawa K, Duan C, Sato O. A ferromagnetically coupled Fe42 cyanide-bridged nanocage[J]. Nat. Commun., 2015,65955. doi: 10.1038/ncomms6955

    15. [15]

      Huang W, Wu S Q, Gu X W, Li Y, Okazawa A, Kojima N, Hayami S, Baker M L, Bencok P, Noguchi M, Miyazaki Y, Nakano M, Nakanishi T, Kanegawa S, Inagaki Y, Kawae T, Zhuang G L, Shiota Y, Yoshizawa K, Wu D Y, Sato O. Temperature dependence of spherical electron transfer in a nanosized[Fe14] complex[J]. Nat. Commun., 2019,105510. doi: 10.1038/s41467-019-13279-y

    16. [16]

      Meng L, Deng Y F, Zhang Y Z. Anion-dependent electron transfer in the cyanide-bridged[Fe2Co2]capsules[J]. Inorg. Chem., 2021,60(18):14330-14335. doi: 10.1021/acs.inorgchem.1c01952

    17. [17]

      Ahmed S, Kumar A, Mukhopadhyay N, Lloret F, Mukherjee R. Heterobimetallic cyanide-bridged Fe(μ-CN)M complexes (M=Mn and Cu): Synthesis, structure and magnetism[J]. New J. Chem., 2022,46:7711-7720. doi: 10.1039/D2NJ00126H

    18. [18]

      Cheng Y, Chen Z Y, Xie K P, Deng Y F, Jiang Y X, Liu Q, Zhang Y Z. Cyanide-bridged Fe-Co polynuclear clusters based on four-coordinate cobalt(Ⅱ)[J]. Inorg. Chem., 2020,59(12):8025-8033. doi: 10.1021/acs.inorgchem.0c00233

    19. [19]

      Shiga T, Tetsuka T, Sakai K, Sekine Y, Nihei M, Newton G N, Oshio H. Cyanide-bridged decanuclear cobalt-iron cage[J]. Inorg. Chem., 2014,53(12):5899-5901. doi: 10.1021/ic500964m

    20. [20]

      Li G L, Nie J, Ni Z H, Zhao Y, Zhang L F. Syntheses, crystal structures and magnetic properties of two Fe-Mn complexes based on manganese(Ⅲ)-porphyrin and tetracyanideferrite(Ⅲ) building blocks[J]. Inorg. Chem. Commun., 2012,19:66-69. doi: 10.1016/j.inoche.2012.02.012

    21. [21]

      Zheng C Y, Xu J P, Wang F, Tao J, Li D F. Spin crossover and reversible single-crystal to single-crystal transformation behaviour in two cyanide-bridged mixed-valence {Fe2Fe2} clusters[J]. Dalton Trans., 2016,45:17254-17263. doi: 10.1039/C6DT03436E

    22. [22]

      Liu X R, Jiao C Q, Meng Y S, Zhu H L, Jiang W J, Wen W, Zhao L, Liu T. Single-molecule magnet behavior in two tetranuclear cyanide-bridged Fe2Ni2 compounds[J]. Z. Anorg. Allg. Chem., 2019,645(4):428-432. doi: 10.1002/zaac.201800401

    23. [23]

      Ni Z H, Kou H Z, Zhang L F, Ge C, Cui A L, Wang R J, Li Y, Sato O. [Mn(salen)]6[Fe(bpmb)(CN)2]6·7H2O: A cyanide-bridged nanosized molecular wheel. Angew[J]. Chem. Ed. Int, 2005,44(47):7742-7745. doi: 10.1002/anie.200502699

    24. [24]

      Zhang D P, Wang H L, Tian L J, Kou H Z, Jiang J Z, Ni Z H. Synthesis, crystal structures, and magnetic properties of cyanide-bridged Fe(Ⅲ)-Mn(Ⅲ) complexes based on manganese(Ⅲ)-porphyrin and pyridinecarboxamide dicyanideiron(Ⅲ) building blocks[J]. Cryst. Growth Des., 2009,9(9):3989-3996. doi: 10.1021/cg9001253

    25. [25]

      Li G L, Wu S Q, Zhang L F, Wang Z X, Ouyang Z W, Ni Z H, Su S Q, Yao Z S, Li J Q, Sato O. Field-induced slow magnetic relaxation in an octacoordinated Fe(Ⅱ) complex with pseudo-D2d symmetry: Magnetic, HF-EPR, and theoretical investigations[J]. Inorg. Chem., 2017,56(14):8018-8025. doi: 10.1021/acs.inorgchem.7b00765

    26. [26]

      Lescouë zec R, Vaissermann J, Lloret F, Julve M, Verdaguer M. Ferromagnetic coupling between low- and high-spin iron(Ⅲ) ions in the tetranuclear complex. fac-{[Fe{HB(pz)3}(CN)2(μ-CN)]3Fe(H2O)3}·6H2O ([HB(pz)3]-=hydrotris(1-pyrazolyl)borate).[J]. Inorg. Chem, 2002,41(23):5943-5945. doi: 10.1021/ic020374o

    27. [27]

      MIAO B X, LI G L, ZHAO Y, NI Z H. Synthesis, crystal structure and magnetic properties of a one-dimensional cyanide-bridged Fe-Cu complex {[Fe(1-CH3im)(CN)4(μ-CN)Cu(cyclam)]·H2O}n[J]. Chinese J. Inorg. Chem., 2013,29(11):2470-2474.  

    28. [28]

      Liu W, Wang C F, Li Y Z, Zuo J L, You X Z. Structural and magnetic studies on cyano-bridged rectangular Fe2M2 (M=Cu, Ni) clusters[J]. Inorg. Chem, 2006,45(25):10058-10065. doi: 10.1021/ic061347r

    29. [29]

      Zhang Y Z, Mallik U P, Clérac R, Rath N P, Holmes S M. Irreversible solvent-driven conversion in cyanometalate {Fe2Ni}n (n=2, 3) single-molecule magnets[J]. Chem. Commun., 2011,47:7194-7196. doi: 10.1039/c1cc10679a

    30. [30]

      Wu D Y, Zhang Y J, Huang W, Sato O. An. S=3 cyanide-bridged tetranuclear Fe2Ni2 square that exhibits slow relaxation of magnetization: synthesis, structure and magnetic properties[J]. Dalton Trans, 2010,39:5500-5503. doi: 10.1039/b925698a

    31. [31]

      Zhuang P F, Zhang Y J, Zheng H, Jiao C Q, Zhao L, Wang J L, He C, Duan C Y, Liu T. Single-molecule magnet behavior in three cyano-bridged heterometallic Fe-Ni clusters[J]. Dalton Trans., 2015,44:3393-3398.  

    32. [32]

      Jiao C Q, Jiang W J, Wen W, Ren Y, Wang J L, Liu T, He C. Single-molecule magnet behavior in a tetranuclear cyano-bridged Fe2Ni2 cluster[J]. Inorg. Chem. Commun., 2016,74:12-15.

  • 加载中
    1. [1]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    15. [15]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    16. [16]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    17. [17]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    18. [18]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    19. [19]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    20. [20]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

Metrics
  • PDF Downloads(4)
  • Abstract views(585)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return