Citation: Jing-Ru HAN, Zhi-Min SUN, Yu LI, Zhi-Yi HU. Morphological effect of strong metal-support interaction in Au/CeO2[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1682-1690. doi: 10.11862/CJIC.2023.113 shu

Morphological effect of strong metal-support interaction in Au/CeO2

Figures(7)

  • Herein, Au/CeO2 was synthesized to study the morphological effect on the behavior construction of strong metal-support interaction (SMSI). Different morphologies of CeO2, such as nanocube and nanorod, were selected as catalytic support. A series of characterization including high resolution (scanning) transmission electron microscopy, X-ray photoelectron spectroscopy, hydrogen temperature programmed reduction (H2-TPR) and so on, revealed that the mass transfer on nanocube was occurred more easily and the CeO2-x coating on the surface of nanocubes was thicker than nanorod. The CeO2-x coating resulted that the adsorption of small molecules decreased significantly and catalytic active sites were hidden. The influence on probe reaction (selective catalytic hydrogenation activity of butadiene) could be observed clearly. Therefore, the CeO2 nanocube was more facile undergo Au-CeO2 SMSI than the nanorod.
  • 加载中
    1. [1]

      Feng J, Gao C B, Yin Y D. Stabilization of noble metal nanostructures for catalysis and sensing[J]. Nanoscale, 2018,10(44):20492-20504. doi: 10.1039/C8NR06757K

    2. [2]

      Kong W, Deng J X, Li L H. Recent advances in noble metal MXene-based catalysts for electrocatalysis[J]. J. Mater. Chem. A, 2022,10(28):14674-14691. doi: 10.1039/D2TA00613H

    3. [3]

      Wang M Y, Ye M D, Iocozzia J, Lin C J, Lin Z Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites[J]. Adv. Sci., 2016,3(6)160024.

    4. [4]

      Zhang F F, Zhu Y L, Lin Q, Zhang L, Zhang X W, Wang H T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis[J]. Energy Environ. Sci., 2021,14(5):2954-3009. doi: 10.1039/D1EE00247C

    5. [5]

      Tauster S J, Fung S C. Strong metal-support interactions: Occurrence among the binary oxides of groups ⅡA-ⅤB[J]. J. Catal., 1978,55(1):29-35. doi: 10.1016/0021-9517(78)90182-3

    6. [6]

      Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J. Am. Chem. Soc., 1978,100:170-175. doi: 10.1021/ja00469a029

    7. [7]

      Murata K, Mahara Y, Ohyama J, Yamamoto Y, Arai S, Satsuma A. The metal-support interaction concerning the particle size effect of Pd/Al2O3 on methane combustion[J]. Angew. Chem. Int. Ed., 2017,56(50):15993-15997. doi: 10.1002/anie.201709124

    8. [8]

      Shi R N, Zhao J X, Liu S S, Sun W, Li H X, Hao P P, Li Z, Ren J. Nitrogen-doped graphene supported copper catalysts for methanol oxidative carbonylation: Enhancement of catalytic activity and stability by nitrogen species[J]. Carbon, 2018,130:185-195. doi: 10.1016/j.carbon.2018.01.011

    9. [9]

      Du X R, Huang Y, Pan X L, Han B, Su Y, Jiang Q, Li M R, Tang H L, Li G, Qiao B T. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts[J]. Nat. Commun., 2020,11(1)5811. doi: 10.1038/s41467-020-19484-4

    10. [10]

      Han B, Guo Y L, Huang Y K, Xi W, Xu J, Luo J, Qi H F, Ren Y J, Liu X Y, Qiao B T, Zhang T. Strong metal-support interactions between Pt single atoms and TiO2[J]. Angew. Chem. Int. Ed., 2020,59(29):11824-11829. doi: 10.1002/anie.202003208

    11. [11]

      Tang H L, Su Y, Zhang B S, Lee A F, Isaacs M A, Wilson K, Li L, Ren Y G, Huang J H, Haruta M, Qiao B T, Liu X, Jin C Z, Su D S, Wang J H, Zhang T. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide[J]. Sci. Adv., 2017,3(10)e1700231. doi: 10.1126/sciadv.1700231

    12. [12]

      Tang M, Li S D, Chen S Y, Ou Y, Hiroaki M, Yuan W T, Zhu B E, Yang H S, Gao Y, Zhang Z, Wang Y. Facet-dependent oxidative strong metal-support interactions of palladium-TiO2 determined by in situ transmission electron microscopy[J]. Angew. Chem. Int. Ed., 2021,60(41):22339-22344. doi: 10.1002/anie.202106805

    13. [13]

      Zhang Y S, Liu J X, Qian K, Jia A P, Li D, Shi L, Hu J, Zhu J F, Huang W X. Structure sensitivity of Au-TiO2 strong metal-support interactions[J]. Angew. Chem. Int. Ed., 2021,60(21):12074-12081. doi: 10.1002/anie.202101928

    14. [14]

      Wu Z F, Li Y Y, Huang W X. Size-dependent Pt-TiO2 strong metal-support interaction[J]. J. Phys. Chem. Lett., 2020,11(12):4603-4607. doi: 10.1021/acs.jpclett.0c01560

    15. [15]

      Florea I, Feral-Martin C, Majimel J, Ihiawakrim D, Hirlimann C, Ersen O. Three-dimensional tomographic analyses of CeO2 nanoparticles[J]. Cryst. Growth Des., 2013,13(3):1110-1121. doi: 10.1021/cg301445h

    16. [16]

      Zhang Y, Zhao S N, Feng J, Song S Y, Shi W D, Wang D, Zhang H J. Unraveling the physical chemistry and materials science of CeO2'-based nanostructures[J]. Chem, 2021,7(8):2022-2059. doi: 10.1016/j.chempr.2021.02.015

    17. [17]

      Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H C, Yan C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J. Phys. Chem. B, 2005,109(51):24380-24385. doi: 10.1021/jp055584b

    18. [18]

      Yan Z X, Gong S H, An L, Yue L, Xu Z H. Enhanced catalytic activity of graphene oxide/CeO2 supported Pt toward HCHO decomposition at room temperature[J]. React. Kinet. Mech. Catal., 2018,124(1):293-304. doi: 10.1007/s11144-018-1348-6

    19. [19]

      Bernal S, Calvino J J, Cauqui M A, Gatica J M, Cartes C L, Omil J A P, Pintado J M. Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect[J]. Catal. Today, 2003,77(4):385-406. doi: 10.1016/S0920-5861(02)00382-6

    20. [20]

      WANG H X, LI X X, ZHOU Y. Constructing and photocatalytic performance of flower-like CeO2/TiO2 heterostructures[J]. Chinese J. Inorg. Chem., 2022,38(1):127-136.  

    21. [21]

      Gilliss S R, Bentley J, Carter C B. Electron energy-loss spectroscopic study of the surface of ceria abrasives[J]. Appl. Surf. Sci., 2005,241(1/2):61-67.

    22. [22]

      Turner S, Lazar S, Freitag B, Egoavil R, Verbeeck J, Put S, Strauven Y, Van Tendeloo G. High resolution mapping of surface reduction in ceria nanoparticles[J]. Nanoscale, 2011,3(8):3385-3390. doi: 10.1039/c1nr10510h

    23. [23]

      Polo-Garzon F, Blum T F, Bao Z H, Wang K, Fung V, Huang Z N, Bickel E E, Jiang D E, Chi M F, Wu Z L. In situ strong metal-support interaction (SMSI) affects catalytic alcohol conversion[J]. ACS Catal., 2021,11(4):1938-1945. doi: 10.1021/acscatal.0c05324

    24. [24]

      Zhang J, Wang H, Wang L, Ali S, Wang C T, Wang L X, Meng X J, Li B, Su D S, Xiao F S. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts[J]. J. Am. Chem. Soc., 2019,141(7):2975-2983. doi: 10.1021/jacs.8b10864

    25. [25]

      Mi R l, Li D, Hu Z, Yang R T. Morphology effects of CeO2 nanomaterials on the catalytic combustion of toluene: A combined kinetics and diffuse reflectance infrared fourier transform spectroscopy study[J]. ACS Catal., 2021,11(13):7876-7889. doi: 10.1021/acscatal.1c01981

    26. [26]

      Paparazzo E. Use and mis-use of X-ray photoemission spectroscopy Ce3d spectra of Ce2O3 and CeO2[J]. J. Phys. Condens. Matter, 2018,30(34)343003. doi: 10.1088/1361-648X/aad248

    27. [27]

      Eastman D E. Photoelectric work functions of transition, rare-earth, and noble metals[J]. Phys. Rev. B, 1970,2(1):1-2.

    28. [28]

      Schilling C, Hess C. Elucidating the role of support oxygen in the water-gas shift reaction over ceria-supported gold catalysts using operando spectroscopy[J]. ACS Catal., 2019,9(2):1159-1171. doi: 10.1021/acscatal.8b04536

    29. [29]

      Schilling C, Hess C. Real-time observation of the defect dynamics in working Au/CeO2 catalysts by combined operando raman/UV-Vis spectroscopy[J]. J. Phys. Chem. C, 2018,122(5):2909-2917. doi: 10.1021/acs.jpcc.8b00027

    30. [30]

      Q R Y, Ke T, J W J. Substantial pretreatment effect on Au/CeO2 nanocatalysts for CO oxidation: Importance of Au-CeO2 interaction[J]. Energy Technol., 2017,6201700511.

    31. [31]

      Ha H, Yoon S, An K, Kim H Y. Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: Effect of the Au-CeO2 interface[J]. ACS Catal., 2018,8(12):11491-11501. doi: 10.1021/acscatal.8b03539

    32. [32]

      Wang M R, Wang Y, Mou X L, Lin R H, Ding Y J. Design strategies and structure-performance relationships of heterogeneous catalysts for selective hydrogenation of 1, 3-butadiene[J]. Chinese J. Catal., 2022,43(4):101-1041.

    33. [33]

      Zhang X, Shi H, Xu B Q. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1, 3-butadiene over Au/ZrO2 catalysts[J]. Angew. Chem. Int. Ed., 2005,44(43):7132-7135. doi: 10.1002/anie.200502101

    34. [34]

      Nassereddine A, Ricolleau C, Alloyeau D. Insights into the structure-reactivity of supported Au nanocatalyst during butadiene selective hydrogenation by atomic scale in situ environmental TEM[J]. Microsc. Microanal., 2017,27:41-42.

    35. [35]

      Hugon A, Delannoy L, Louis C. Supported gold catalysts for selective hydrogenation of 1, 3-butadiene in the presence of an excess of alkenes[J]. Gold Bull, 2008,41(2):127-138. doi: 10.1007/BF03216590

    36. [36]

      Jing P, Gong X, Liu B C, Zhang J. Recent advances in synergistic effect promoted catalysts for preferential oxidation of carbon monoxide[J]. Catal. Sci. Technol., 2020,10(4):919-934. doi: 10.1039/C9CY02073J

    37. [37]

      Liu Z P, Wang C M, Fan K N. Single gold atoms in heterogeneous catalysis: Selective 1, 3-butadiene hydrogenation over Au/ZrO2[J]. Angew. Chem. Int. Ed., 2006,45(41):6865-6868. doi: 10.1002/anie.200601853

    38. [38]

      ZHANG T, ZHANG Y W. Research advances on strong metal-support interactions at metal-oxide interfaces and their roles in regulating catalytic properties of noble metal-ceria supported catalysts[J]. Journal of the Chinese Society of Rare Earths, 2014,32(2):129-142.  

  • 加载中
    1. [1]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    2. [2]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    6. [6]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    17. [17]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(0)
  • Abstract views(619)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return