Citation: Long SUN, Xiao-Xia WANG, Feng SU. Synthesis, structure, and electrocatalytic oxygen reduction reaction properties ofmetal chalcogenide non-supertetrahedral In—Sn—S cluster materials[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1369-1378. doi: 10.11862/CJIC.2023.112 shu

Synthesis, structure, and electrocatalytic oxygen reduction reaction properties ofmetal chalcogenide non-supertetrahedral In—Sn—S cluster materials

  • Corresponding author: Long SUN, sxsunlong@163.com
  • Received Date: 12 February 2023
    Revised Date: 7 May 2023

Figures(9)

  • The development of metal chalcogenide non-supertetrahedral (non-Tn) cluster materials composed of metal In and Sn is very important for realizing the structural diversity of the materials and enriching their photoelectric applications. Herein, a series of new non-Tn cluster-based compounds C7H13N2[InS2] (1), (C7H13N2)4[In2S11Sn3] (2), and (C7H13N2)3[In3S12Sn3] (3) were prepared by the solvothermal method, where C7H13N2=protonated 1, 5-diazabicyclo[4.3.0]non-5-ene. The three compounds are formed by the combination of {SnS4}, {InS4}, or {InS5} coordination units in the way of edge-sharing or vertex-sharing. The electrocatalytic oxygen reduction reaction (ORR) study showed that the reduction peak potentials of compounds 1-3 were 0.6, 0.64, and 0.65 V, respectively, which indicates that compounds 2 and 3 containing Sn(Ⅳ) have better catalytic performance. More than that, the Koutecky-Levich plot analysis showed that the composition ratio of In and Sn in the compounds has a significant modulating effect on the ORR catalytic pathways.
  • 加载中
    1. [1]

      Manos M J, Kanatzidis M G. Metal sulfide ion exchangers: Superior sorbents for the capture of toxic and nuclear waste-related metal ions[J]. Chem. Sci., 2016,7(8):4804-4824. doi: 10.1039/C6SC01039C

    2. [2]

      Feng M L, Sarma D, Gao Y J, Qi X H, Li W A, Huang X Y, Kanatzidis M G. Efficient removal of[UO2]2+, Cs+, and Sr2+ ions by radiation-resistant gallium thioantimonates[J]. J. Am. Chem. Soc., 2018,140(35):11133-11140. doi: 10.1021/jacs.8b07457

    3. [3]

      Li W A, Peng Y C, Ma W, Huang X Y, Feng M L. Rapid and selective removal of Cs+ and Sr2+ ions by two zeolite-type sulfides via ion exchange method[J]. Chem. Eng. J., 2022,442(2)136377.

    4. [4]

      Zhu J Y, Cheng L, Zhao Y M, Li M Y, Wang Z Z, Wang J, Wang C, Wang K Y. Structural investigation on the efficient capture of Cs+ and Sr2+ by a microporous Cd-Sn-Se ion exchanger constructed from mono-lacunary supertetrahedral clusters[J]. Inorg. Chem. Front., 2022,9:2880-2894. doi: 10.1039/D2QI00338D

    5. [5]

      Nie L N, Jian X, Liu G F, Hao S J, Xu Z J, Xu R, Zhang Q C. Crystalline In-Sb-S framework for highly-performed lithium/sodium storage[J]. J. Mater. Chem. A, 2017,5(27):14198-14205. doi: 10.1039/C7TA03334F//www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201507007.htm2017.01.017

    6. [6]

      Tang J Q, Wang X, Zhang J X, Wang J, Yin W J, Li D S, Wu T. A chalcogenide-cluster-based semiconducting nanotube array with oriented photoconductive behavior[J]. Nat. Commun., 2021,12(1)4275. doi: 10.1038/s41467-021-24510-0

    7. [7]

      Lin J, Dong Y Z, Zhang Q, Hu D D, Li N, Wang L, Liu Y, Wu T. Interrupted chalcogenide-based zeolite-analogue semiconductor: Atomically precise doping for tunable electro-/photoelectrochemical properties[J]. Angew. Chem. Int. Ed., 2015,54(17):5103-5107. doi: 10.1002/anie.201500659

    8. [8]

      Liu D L, Fan X, Wang X, Hu D D, Xue C Z, Liu Y, Wang Y, Zhu X, Guo J, Lin H P, Li Y Y, Zhong J, Li D S, Bu X H, Feng P Y, Wu T. Cooperativity by multi-metals confined in supertetrahedral sulfide nanoclusters to enhance electrocatalytic hydrogen evolution[J]. Chem. Mater., 2018,31(2):553-559.

    9. [9]

      Wang W, Wang X, Hu D D, Yang H J, Xue C Z, Lin Z E, Wu T. An unusual metal chalcogenide zeolitic framework built from the extended spiro-5 units with supertetrahedral clusters as nodes[J]. Inorg. Chem., 2018,57(3):921-925. doi: 10.1021/acs.inorgchem.7b03057

    10. [10]

      Lin Q P, Bu X H, Mao C Y, Zhao X, Sasan K, Feng P Y. Mimicking high-silica zeolites: Highly stable germanium- and tin-rich zeolite-type chalcogenides[J]. J. Am. Chem. Soc., 2015,137(19):6184-6187. doi: 10.1021/jacs.5b03550

    11. [11]

      Sasan K, Lin Q P, Mao C Y, Feng P Y. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel[J]. Nanoscale, 2016,8(21):10913-10916. doi: 10.1039/C6NR02525K

    12. [12]

      Bu X H, Zheng N F, Feng P Y. Tetrahedral chalcogenide clusters and open frameworks[J]. Chem.-Eur. J., 2004,10(14):3356-3362. doi: 10.1002/chem.200306041

    13. [13]

      Zhang J X, Bu X H, Feng P Y, Wu T. Metal chalcogenide supertetrahedral clusters: Synthetic control over assembly, dispersibility, and their functional applications[J]. Acc. Chem. Res., 2020,53(10):2261-2272. doi: 10.1021/acs.accounts.0c00381

    14. [14]

      Silva-Gaspar B, Martinez-Franco R, Pirngruber G, Fécant A, Diaz U, Corma A. Open-framework chalcogenide materials—From isolated clusters to highly ordered structures and their photocatalytic applications[J]. Coord. Chem. Rev., 2022,453214243. doi: 10.1016/j.ccr.2021.214243

    15. [15]

      Wu T, Bu X H, Zhao X, Khazhakyan R, Feng P Y. Phase selection and site-selective distribution by tin and sulfur in supertetrahedral zinc gallium selenides[J]. J. Am. Chem. Soc., 2011,133(24):9616-9625. doi: 10.1021/ja203143q

    16. [16]

      Zhang J X, Feng P Y, Bu X H, Wu T. Atomically precise metal chalcogenide supertetrahedral clusters: Frameworks to molecules, and structure to function[J]. Nati. Sci. Rev., 2022,9nwab076. doi: 10.1093/nsr/nwab076

    17. [17]

      Feng M L, Wang K Y, Huang X Y. Combination of metal coordination tetrahedra and asymmetric coordination geometries of Sb(Ⅲ) in the organically directed chalcogenidometalates: Structural diversity and ion-exchange properties[J]. Chem. Rec., 2016,16(2):582-600. doi: 10.1002/tcr.201500243

    18. [18]

      Wang K Y, Feng M L, Huang X Y, Li J. Organically directed heterometallic chalcogenidometalates containing group 12(Ⅱ)/13(Ⅲ)/14(Ⅳ) metal ions and antimony(Ⅲ)[J]. Coord. Chem. Rev., 2016,322:41-68. doi: 10.1016/j.ccr.2016.04.021

    19. [19]

      SHELE M G, DU C X, TIAN X Y, BAIYIN M H. Solvothermal synthesis and properties of quaternary chalcogenides containing transition metals cadmium or mercury[J]. Chinese J. Inorg. Chem., 2021,37(12):2149-2157.  

    20. [20]

      Wang K Y, Ding D, Zhang S, Wang Y L, Liu W, Wang S, Wang S H, Liu D, Wang C. Preparation of thermochromic selenidostannates in deep eutectic solvents[J]. Chem. Commun., 2018,54(38):4806-4809. doi: 10.1039/C8CC01614C

    21. [21]

      Wang K Y, Sun M, Ding D, Liu H W, Cheng L, Wang C. Di-lacunary[In6S15]12- cluster: The building block of a highly negatively charged framework for superior Sr2+ adsorption capacities[J]. Chem. Commun., 2020,56:3409-3412. doi: 10.1039/D0CC00441C

    22. [22]

      Zhang K, Dong H F, Dai W H, Meng X D, Lu H T, Wu T T, Zhang X J. Fabricating Pt/Sn-In2O3 nanoflower with advanced oxygen reduction reaction performance for high-sensitivity microrna electrochemical detection[J]. Anal. Chem., 2017,89(1):648-655. doi: 10.1021/acs.analchem.6b02858

    23. [23]

      Chen H L, Chen J X, Si J C, Hou Y, Zheng Q, Yang B, Li Z J, Gao L G, Lei L C, Wen Z H, Feng X L. Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate[J]. Chem. Sci., 2020,11(15):3952-3958. doi: 10.1039/C9SC06548B

    24. [24]

      Zhao X L, Huang M, Deng B W, Li K L, Li F, Dong F. Interfacial engineering of In2O3/InN heterostructure with promoted charge transfer for highly efficient CO2 reduction to formate[J]. Chem. Eng. J., 2022,437135114. doi: 10.1016/j.cej.2022.135114

    25. [25]

      FENG M L, HUANG X Y. Recent progress in organic hybrid main group heterometallic chalcogenides based on antimony[J]. Chinese J. Inorg. Chem., 2013,29(8):1599-1608.  

    26. [26]

      Sheldrick G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.

    27. [27]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    28. [28]

      Brown I D. The chemical bond in inorganic chemistry: The bond valence model. Oxford: Oxford University Press, 2006: 27-29

    29. [29]

      Zhang Y Y, Hu D D, Xue C Z, Yang H J, Wang X, Wu T. A 3D neutral chalcogenide framework built from a supertetrahedral T3 cluster and a metal complex for the electrocatalytic oxygen reduction reaction[J]. Dalton Trans., 2018,47:3227-3230. doi: 10.1039/C7DT04891B

    30. [30]

      Wu Z, Wang X L, Hu D D, Wu S J, Liu C D, Wang X, Zhou R, Li D S, Wu T. A new cluster-based chalcogenide zeolite analogue with a large inter-cluster bridging angle[J]. Inorg. Chem. Front., 2019,6:3063-3069. doi: 10.1039/C9QI01051C

    31. [31]

      Peng Y, Bai Y, Liu C L, Cao S, Kong Q Q, Pang H. Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage[J]. Coord. Chem. Rev., 2022,466214602. doi: 10.1016/j.ccr.2022.214602

    32. [32]

      Du M, Li X R, Pang H, Xu Q. Alloy electrocatalysts[J]. EnergyChem, 2023,5(2)100083. doi: 10.1016/j.enchem.2022.100083

    33. [33]

      Qiu Z W, Bai Y, Gao Y D, Liu C L, Ru Y, Pi Y C, Zhang Y Z, Luo Y S, Pang H. MXenes nanocomposites for energy storage and conversion[J]. Rare Met., 2022,41:1101-1128. doi: 10.1007/s12598-021-01876-0

    34. [34]

      Wang W, Wang X, Zhang J X, Yang H J, Luo M, Xue C Z, Lin Z E, Wu T. Three-dimensional superlattices based on unusual chalcogenide supertetrahedral In-Sn-S nanoclusters[J]. Inorg. Chem., 2019,58(1):31-34. doi: 10.1021/acs.inorgchem.8b02574

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    9. [9]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    10. [10]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    11. [11]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    17. [17]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    18. [18]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    19. [19]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    20. [20]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

Metrics
  • PDF Downloads(3)
  • Abstract views(771)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return