Citation: Hua-Li CUI, Xin-Yue XU, Wen LIU, Xiao-Li CHEN, Hua YANG, Lin LIU, Ji-Jiang WANG. Multifunctional Zn(Ⅱ) metal-organic framework fluorescent sensor to detect C6H5CHO, tetracycline, 2, 4, 6-trinitrophenol, fluazinam, Cr2O72- and Fe3+[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1389-1406. doi: 10.11862/CJIC.2023.109 shu

Multifunctional Zn(Ⅱ) metal-organic framework fluorescent sensor to detect C6H5CHO, tetracycline, 2, 4, 6-trinitrophenol, fluazinam, Cr2O72- and Fe3+

  • Corresponding author: Hua-Li CUI, cuihuali07@163.com
  • Received Date: 16 November 2022
    Revised Date: 22 May 2023

Figures(18)

  • A novel Zn(Ⅱ) metal-organic framework (MOF) [Zn2(Hdepa)(dya)2]n (1) (H5depa=2, 2′, 3, 4′, 5-diphenyl ether pentacarboxylic, dya=2, 2′-dipyridyl amine) was successfully prepared. Single-crystal X-ray diffraction analysis indicates that MOF 1 is composed of two Zn2+ ions joining one Hdepa4- ion and two dya molecules, forming a 3D framework through hydrogen bonding. The phase purity of the MOF 1 was demonstrated by powder X-ray diffraction and IR. Interestingly, 1 has excellent fluorescence properties and thermal stability. Notably, due to its excellent fluorescence performance, the high sensitivity and selectivity of 1 enable it to be used as a fluorescence sensor to detect C6H5CHO (BZH), tetracycline (TC), 2, 4, 6-trinitrophenol (TNP), fluazinam (Flu), Cr2O72-, and Fe3+. In addition, the quenching process of Fe3+, TC, and BZH to MOF 1 was analyzed by fluorescence lifetime, and the fluorescence quenching mechanism of Fe3+, Cr2O72-, TNP, TC, BZH, and Flu was studied by energy transfer.
  • 加载中
    1. [1]

      Ahuja S. Environmental perspective on sustainability and water reclamation[J]. Teaching and Learning about Sustainability, 2015,1205:87-103.

    2. [2]

      Agarwal R A, Gupta A K, De D. Flexible Zn-MOF exhibiting selective CO2 adsorption and efficient Lewis acidic catalytic activity[J]. Cryst. Growth Des., 2019,19:2010-2018. doi: 10.1021/acs.cgd.8b01462

    3. [3]

      Zhu K, Fan R Q, Wu J K, Wang B W, Lu H Y, Zheng X B, Sun T C, Gai S S, Zhou X S, Yang Y L. MOF-on-MOF membrane with cascading functionality for capturing dichromate ions and p-arsanilic acid turn-on sensing[J]. ACS Appl. Mater. Interfaces, 2020,12(52):58239-58251. doi: 10.1021/acsami.0c17875

    4. [4]

      Hang X X, Xue Y D, Cheng Y, Du M, Du L T, Pang H. From Co-MOF to CoNi-MOF to Ni-MOF: A facile synthesis of 1D micro-/nanomaterials[J]. Inorg. Chem., 2021,60(17):13168-13176. doi: 10.1021/acs.inorgchem.1c01561

    5. [5]

      Patel U, Patel P, Parmar B, Dadhania A, Suresh E. Synergy of dual functional sites for conversion of CO2 in a cycloaddition reaction under solvent-free conditions by a Zn(Ⅱ)-based coordination network with a ladder motif[J]. Cryst. Growth Des., 2021,21(3):1833-1842. doi: 10.1021/acs.cgd.0c01703

    6. [6]

      Wang X N, Zhang Y, Shi Z X, Lu T T, Wang Q, Li B. Multifunctional Zr-MOF based on bisimidazole tetracarboxylic acid for pH sensing and photoreduction of Cr(Ⅵ)[J]. ACS Appl. Mater. Interfaces, 2021,13(45):54217-54226. doi: 10.1021/acsami.1c18130

    7. [7]

      Chen Z, Idrees K B, Shetty S, Xie H, Wasson M C, Gong W, Zhang X, Alameddine B, Farh O K. Regulation of catenation in metal-organic frameworks with tunable clathrochelate-based building blocks[J]. Cryst. Growth Des., 2021,21(12):6665-6670. doi: 10.1021/acs.cgd.1c01151

    8. [8]

      Macreadie L K, Qazvini O T, Babarao R. Reversing benzene/cyclohexane selectivity through varying supramolecular interactions using aliphatic, isoreticular MOFs[J]. ACS Appl. Mater. Interfaces, 2021,13(26):30885-30890. doi: 10.1021/acsami.1c08823

    9. [9]

      Sun Z, Sun J, Xi L, Xie J, Wang X F, Ma Y, Li L C. Two novel lanthanide metal-organic frameworks: Selective luminescent sensing for nitrobenzene, Cu2+ and MnO4-[J]. Cryst. Growth Des., 2020,20(8):5225-5234. doi: 10.1021/acs.cgd.0c00432

    10. [10]

      Buragohain A, Yousufuddin M, Sarma M, Biswas S. 3D luminescent amide-functionalized cadmium tetrazolate framework for selective detection of 2, 4, 6-trinitrophenol[J]. Cryst. Growth Des., 2016,16(2):842-851. doi: 10.1021/acs.cgd.5b01427

    11. [11]

      Mukhopadhyay A, Jindal S, Savitha G, Moorthy J N. Temperature- dependent emission and turn-off fluorescence sensing of hazardous "quat" herbicides in water by a Zn-MOF based on a semi-rigid dibenzochrysene tetraacetic acid linker[J]. Inorg. Chem., 2020,59(9):6202-6213. doi: 10.1021/acs.inorgchem.0c00307

    12. [12]

      Yang Y, Li L Z, Yang H, Sun L. Five lanthanide-based metal-organic frameworks built from a π-conjugated ligand with isophthalate units featuring sensitive fluorescent sensing for DMF and acetone molecules[J]. Cryst. Growth Des., 2021,2(5):1:2954-2961.

    13. [13]

      Jia P, Gao L, Zheng Y, Zheng X, Wang C, Yang C L, Li Y B, Zhao Y L. Ultrastable Tb-organic framework as a selective sensor of phenylglyoxylic acid in urine[J]. ACS Appl. Mater. Interfaces, 2021,13(28):33546-33556. doi: 10.1021/acsami.1c09202

    14. [14]

      Qu X L, Yan B. Stable Tb(Ⅲ)-based metal-organic framework: Structure, photoluminescence, and chemical sensing of 2-thiazolidinethione-4-carboxylic acid as a biomarker of CS2[J]. Inorg. Chem., 2019,58(1):524-534. doi: 10.1021/acs.inorgchem.8b02738

    15. [15]

      Li H P, Xue Y Y, Wang Y, Sun H, Hu M C, Li S N, Jiang Y, Zhai Q G. Regulation on topological architectures and gas adsorption for cadmium-azolate-carboxylate frameworks by the ligand flexibility[J]. Cryst. Growth Des., 2021,21(3):1718-1726. doi: 10.1021/acs.cgd.0c01617

    16. [16]

      Lin Z T, Liu Q Y, Yang L, He C T, Li L, Wang Y L. Fluorinated biphenyldicarboxylate-based metal-organic framework exhibiting efficient propyne/propylene separation[J]. Inorg. Chem., 2020,59(6):4030-4036. doi: 10.1021/acs.inorgchem.0c00003

    17. [17]

      Shi X L, Zu Y C, Jiang S S, Sun F X. An anionic indium-organic framework with spirobifluorene-based ligand for selective adsorption of organic dyes[J]. Inorg. Chem., 2021,60(3):1571-1578. doi: 10.1021/acs.inorgchem.0c02962

    18. [18]

      Fan C B, Wang L L, Xu C G, Wang J M, Zhu B, Liu W B, Zhang X, Zong Z, Fan Y H. High-efficiency organic contaminants remover based on modulated self-assembly of cobalt metal-organic frameworks[J]. Cryst. Growth Des., 2021,21(8):4305-4317. doi: 10.1021/acs.cgd.0c01724

    19. [19]

      Qin L, Chen H Z, Lei J, Wang Y Q, Ye T Q, Zheng H G. Photodegradation of some organic dyes over two metal organic frameworks especially high efficiency for safranine T[J]. Cryst. Growth Des., 2017,17(3):1293-1298. doi: 10.1021/acs.cgd.6b01690

    20. [20]

      Deng S Q, Miao Y L, Tan Y L, Fang H N, Li Y T, Mo X J, Cai S L, Fan J, Zhang W G, Zheng S R. An anionic nanotubular metal-organic framework for high capacity dye adsorption and dye degradation in darkness[J]. Inorg. Chem., 2019,58(20):13979-13987. doi: 10.1021/acs.inorgchem.9b01959

    21. [21]

      Chen S S, Han S S, Ma C B, Li W D, Zhao Y. A series of metal- organic frameworks: Syntheses, structures and luminescent detection, gas adsorption, magnetic properties[J]. Cryst. Growth Des., 2021,21(10):869-885.

    22. [22]

      Chen Y Q, Liu S J, Li Y W, Li G R, He K H, Qu Y K, Hu T L, Bu X H. A two-fold interpenetrated coordination framework with a rare (3, 6)-connected loh1 topology: Magnetic properties and photocatalytic behavior[J]. Cryst. Growth Des., 2012,12(11):5426-5431. doi: 10.1021/cg301010x

    23. [23]

      Han J H, Hu B Q, Li T M, Liang H, Yu F, Wang L, Zhao Q, Li B. Modulating the architectures of cobalt metal-organic frameworks to fine-tune slow magnetic relaxation behaviors[J]. Cryst. Growth Des., 2021,21(10):5678-5686. doi: 10.1021/acs.cgd.1c00524

    24. [24]

      Hwang S M, Choi S Y, Youn M H, Lee W, Park K T, Gothandapani K, Grace A N, Jeong S K. Investigation on electroreduction of CO2 to formic acid using Cu3(BTC)2 metal-organic framework (Cu-MOF) and graphene oxide[J]. ACS Omega, 2020,5(37):23919-23930. doi: 10.1021/acsomega.0c03170

    25. [25]

      Bandomo G C D, Mondal S S, Franco F, Bucci A, Martin-Diaconescu V, Ortuño M A, Langevelde P, Shafir A, ópez N, Lloret-Fillol J. Mechanically constrained catalytic Mn(CO)3Br single sites in a two dimensional covalent organic framework for CO2 electroreduction in H2O[J]. ACS Catal., 2021,11(12):7210-7222. doi: 10.1021/acscatal.1c00314

    26. [26]

      Lin Z Y, Datta A, Das K, Inamdar A, Hsieh H Y, Huang Y H, Chiang M H, Liu C J, Chen L R, Lin Y W, Lee H M. Proton-conducting Cobalt(Ⅱ) 3D MOFs incorporating bis(imidazole) and polycarboxylate linkages: Framework topology and interpenetration[J]. Cryst. Growth Des., 2021,21(10):5594-5602. doi: 10.1021/acs.cgd.1c00385

    27. [27]

      Liu X J, Zhang Y H, Chang Z, Li A L, Tian D, Yao Z Q, Jia Y Y, Bu X H. A water-stable metal-organic framework with a double-helical structure for fluorescent sensing[J]. Inorg. Chem., 2016,55(15):7326-7328. doi: 10.1021/acs.inorgchem.6b00935

    28. [28]

      Chen H Y, Wang J, Shan D L, Chen J, Zhang S T, Lu X Q. Dual-emitting fluorescent metal-organic framework nanocomposites as a broad-range pH sensor for fluorescence imaging[J]. Anal. Chem., 2018,90(11):7056-7063. doi: 10.1021/acs.analchem.8b01455

    29. [29]

      XU X Y, CUI H L, LIU W, CHEN X L, YANG H, LIU L, WANG J J. Synthesis and fluorescence sensing for Fe3+ and p-nitrophenol of a copper coordination polymer[J]. Chinese J. Inorg. Chem., 2022,38(12):2539-2549. doi: 10.11862/CJIC.2022.253 

    30. [30]

      Rajaji P, Panneerselvam P. A novel polydopamine grafted 3D MOF nanocubes mediated GR-5/GC DNA zyme complex with enhanced fluorescence emission response toward spontaneous detection of Pb(Ⅱ) and Ag? ions[J]. ACS Omega, 2020,5(39):25188-25198. doi: 10.1021/acsomega.0c03257

    31. [31]

      LIU M R, YUE E L, WANG J J, ZHU W C, QUAN H, TANG L, WANG X, HOU X Y, ZHANG Y Q. Selective detection of 2, 4, 6- trinitrophenol and fluazinamin water based on a 1D Zn(Ⅱ) coordination polymer[J]. Chinese J. Inorg. Chem., 2023,39(2):375-384.  

    32. [32]

      Tang J P, Huang M Y, Liang Z X, Yang Y Y, Wen Y H, Zhu Q L, Wu X T. Water-stable two-dimensional metal-organic framework nanostructures for Fe3+ ions detection[J]. Cryst. Growth Des., 2021,21(9):5275-5282. doi: 10.1021/acs.cgd.1c00606

    33. [33]

      Lv R, Li H, Su J, Fu X, Yang B Y, Gu W, Liu X. Zinc metal-organic framework for selective detection and differentiation of Fe(Ⅲ) and Cr(Ⅵ) ions in aqueous solution[J]. Inorg. Chem., 2017,56(20):12348-12356. doi: 10.1021/acs.inorgchem.7b01822

    34. [34]

      Wang H H, Zhang Y, Yang D B, Hou L, Li Z Y, Wang Y Y. Fluorine-substituted regulation in two comparable isostructural Cd(Ⅱ) coordination polymers: Enhanced fluorescence detection for tetracyclines in water[J]. Cryst. Growth Des., 2021,21(4):2488-2497. doi: 10.1021/acs.cgd.1c00110

    35. [35]

      Liu G N, Xu R D, Zhao R Y, Sun Y, Bo Q B, Duan Z Y, Li Y H, Wang Y Y, Wu Q, Li C. Hybrid copper iodide cluster-based pellet sensor for highly selective optical detection of o-nitrophenol and tetracycline hydrochloride in aqueous solution[J]. ACS Sustain. Chem. Eng., 2019,7(23):18863-18873. doi: 10.1021/acssuschemeng.9b03963

    36. [36]

      Wang R M, Liu X B, Huang A, Wang W, Xiao Z Y, Zhang L L, Dai F N, Sun D F. Unprecedented solvent-dependent sensitivities in highly efficient detection of metal ions and nitroaromatic compounds by a fluorescent barium metal-organic framework[J]. Inorg. Chem., 2016,55(4):1782-1787. doi: 10.1021/acs.inorgchem.5b02693

    37. [37]

      Yi K Y, Li H, Zhang X T, Zhang L. Designed Tb(Ⅲ)-functionalized MOF-808 as visible fluorescent probes for monitoring bilirubin and identifying fingerprints[J]. Inorg. Chem., 2021,60(5):3172-3180. doi: 10.1021/acs.inorgchem.0c03312

    38. [38]

      Liu C H, Guan Q L, Yang X D, Bai F Y, Sun L X, Xing Y H. Polyiodine-modified 1, 3, 5-benzenetricarboxylic acid framework Zn(Ⅱ)/Cd(Ⅱ) complexes as highly selective fluorescence sensors for thiamine hydrochloride, NACs, and Fe3+/Zn2+[J]. Inorg. Chem., 2020,59(12):8081-8098. doi: 10.1021/acs.inorgchem.0c00391

    39. [39]

      Ma J X, Ma T T, Qian R, Zhou L Q, Guo Q, Yang J H, Yang Q F. Na-Ln heterometallic coordination polymers: Structure modulation by Na+ concentration and efficient detection to tetracycline antibiotics and 4-(phenylazo) aniline[J]. Inorg. Chem., 2021,60(11):7937-7951. doi: 10.1021/acs.inorgchem.1c00462

    40. [40]

      Zheng X H, Zhao Y J, Jia P, Wang Q Z, Liu Y N, Bu T, Zhang M, Bai F E, Wang L. Dual-emission Zr-MOF-based composite material as a fluorescence turn-on sensor for the ultrasensitive detection of Al3+[J]. Inorg. Chem., 2020,59(24):18205-18213. doi: 10.1021/acs.inorgchem.0c02674

    41. [41]

      Liu W B, Li N N, Zhang X, Zhao Y, Zong Z, Wu R X, Tong J P, Bi C F, Shao F, Fan Y H. Four Zn(Ⅱ)-MOFs as highly sensitive chemical sensor for the rapid detection of tetracycline, o-nitro phenol, Cr2O72-/PO43-, Fe3+/Al3+ in water environment[J]. Cryst. Growth Des., 2021,21(10):5558-5575. doi: 10.1021/acs.cgd.1c00359

    42. [42]

      Tian H R, Liu S M, Zhang Z, Dang T Y, Lu Y, Liu S X. Highly stable polyoxovanadate-based Zn-MOF with dual active sites as a solvent-free catalyst for C-C bond formation[J]. ACS Sustain. Chem. Eng., 2021,9(12):4660-4667. doi: 10.1021/acssuschemeng.1c00389

    43. [43]

      Wu X X, Fu H R, Han M L, Zhou Z, Ma L F. Tetraphenylethylene immobilized metal-organic frameworks: Highly sensitive fluorescent sensor for the detection of Cr2O72- and nitroaromatic explosives[J]. Cryst. Growth Des., 2017,17(11):6041-6048. doi: 10.1021/acs.cgd.7b01155

    44. [44]

      Sun Z, Yang M, Ma Y, Li L C. Multi-responsive luminescent sensors based on two-dimensional lanthanide-metal organic frameworks for highly selective and sensitive detection of Cr(Ⅲ) and Cr(Ⅵ) ions and benzaldehyde[J]. Cryst. Growth Des., 2017,17(8):4326-4335. doi: 10.1021/acs.cgd.7b00638

    45. [45]

      Du P Y, Gu W, Liu X. Highly selective luminescence sensing of nitrite and benzaldehyde based on 3d-4f heterometallic metal-organic frameworks[J]. Dalton Trans., 2016,45:8700-8704. doi: 10.1039/C6DT01360K

    46. [46]

      Wang X Y, Yan P F, Li Y X, An G H, Yao X, Li G M. Highly efficient white-light emission and UV-visible/NIR luminescence sensing of lanthanide metal-organic frameworks[J]. Cryst. Growth Des., 2017,17(4):2178-2185. doi: 10.1021/acs.cgd.7b00112

    47. [47]

      Du P Y, Gu W, Liu X. Multifunctional three-dimensional europium metal-organic framework for luminescence sensing of benzaldehyde and Cu2+ and selective capture of dye molecules[J]. Inorg. Chem., 2016,55(16):7826-7828. doi: 10.1021/acs.inorgchem.6b01385

    48. [48]

      Stylianou K C, Heck R, Chong S Y, Bacsa J, Jones J, Khimyak Y Z, Bradshaw D, Rosseinsky M J. A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core[J]. J. Am. Chem. Soc., 2010,132(12):4119-4130. doi: 10.1021/ja906041f

    49. [49]

      Zhao Y, Zeng H, Zhu X W, Lu W, Li D. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications[J]. Chem. Soc. Rev., 2021,50:4484-4513. doi: 10.1039/D0CS00955E

    50. [50]

      Cui L S, Zhu B, Huang K R, Gan Y L, Li Y C, Long J Q. Synthese, structure of three Zn-MOFs and potential sensor material for tetracycline antibiotic in water: {[Zn(bdc)(4, 4'-bidpe)]·H2O}n[J]. J. Solid State Chem., 2020,290121526. doi: 10.1016/j.jssc.2020.121526

    51. [51]

      Lin M, Zou H Y, Yang T, Liu Z X, Liu H, Huang C Z. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers[J]. Nanoscale, 2016,8:2999-3007. doi: 10.1039/C5NR08177G

    52. [52]

      Zhu B, Zong Z, Zhang X, Zhang D M, Cui L S, Bi C F, Fan Y H. Highly selective and stable Zn(Ⅱ)-based metal-organic frameworks for the detections of tetracycline antibiotic and acetone in aqueous system[J]. Appl. Organometal. Chem., 2020,34:5518-5528.

    53. [53]

      Rachuri Y, Parmar B, Suresh E. Three dimensional Co(Ⅱ)/Cd(Ⅱ) MOFs: Luminescent Cd-MOF for detection and adsorption of TNP in aqueous phase[J]. Cryst. Growth Des., 2018,18(5):3062-3072. doi: 10.1021/acs.cgd.8b00204

    54. [54]

      Bairy G, Dey A, Dutta B, Ray P P, Sinha C. 2D Cd(Ⅱ)-MOF of pyridyl-imidazoquinazoline: Structure, luminescence, and selective detection of TNP and fabrication of semiconducting devices[J]. Cryst. Growth Des., 2022,22(5):3138-3147. doi: 10.1021/acs.cgd.2c00017

    55. [55]

      Khan S, Hazra A, Dutta B, Akhtaruzzaman , Raihan M J, Banerjee P, Mir M H. Strategic design of anthracene-decorated highly luminescent coordination polymers for selective and rapid detection of TNP: An explosive nitro derivative and mutagenic pollutant[J]. Cryst. Growth Des., 2021,21(6):3344-3354. doi: 10.1021/acs.cgd.1c00145

    56. [56]

      Mukherjee S, Desai A V, Manna B, Inamdar A I, Ghosh S K. Exploitation of guest accessible aliphatic amine functionality of a metal- organic framework for selective detection of 2, 4, 6-trinitrophenol (TNP) in water[J]. Cryst. Growth Des., 2015,15(9):4627-4634. doi: 10.1021/acs.cgd.5b00902

    57. [57]

      Rath B B, Vittal J J. Water stable Zn(Ⅱ) metal-organic framework as a selective and sensitive luminescent probe for Fe(Ⅲ) and chromate ions[J]. Inorg. Chem., 2020,59(13):8818-8826. doi: 10.1021/acs.inorgchem.0c00545

    58. [58]

      Shyam C P, Debolina M, Madhab C D. pH-stable luminescent metal-organic frameworks for the selective detection of aqueous-phase Fe(Ⅲ) and Cr(Ⅵ) ions[J]. Inorg. Chem., 2022,61:12396-12405. doi: 10.1021/acs.inorgchem.2c01793

    59. [59]

      Sun Y, Zhang N, Guan Q L, Liu C H, Li B, Zhang K Y, Li G H, Xing Y H, Bai F Y, Sun L X. Sensing of Fe3+ and Cr2O72- in water and white light: Synthesis, characterization, and fluorescence properties of a crystalline bismuth-1, 3, 5-benzenetricarboxylic acid framework[J]. Cryst. Growth Des., 2019,19(12):7217-7229. doi: 10.1021/acs.cgd.9b01098

    60. [60]

      Fu M M, Liu C, Dong G Y. Two Cd(Ⅱ)-based metal-organic frameworks for the highly effective detection of Fe3+ ions and levofloxacin in aqueous media[J]. CrystEngComm, 2021,23:7397-7405. doi: 10.1039/D1CE01128F

    61. [61]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.  

    62. [62]

      Shi M, Fu C C, Yu J, Yang Y P, Shi P F. A novel 2D metal-organic framework probe: A highly sensitive and visual fluorescent sensor for Al3+, Cr3+ and Fe3+ ions[J]. New J. Chem., 2022,46:18911-18916. doi: 10.1039/D2NJ03911G

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    9. [9]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    10. [10]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    16. [16]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    17. [17]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    18. [18]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    19. [19]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    20. [20]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

Metrics
  • PDF Downloads(4)
  • Abstract views(898)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return