Citation: Pei-Ying CHENG, Li-Hua ZHU, Chun-Xin LÜ, Jiang-Hua LIU, Wei ZHONG, Ya-Bing HE. Efficient aerobic oxidation of alcohols over Cu-Cu2O nanoparticles supported on a porous polythiophene polymer[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1223-1234. doi: 10.11862/CJIC.2023.108 shu

Efficient aerobic oxidation of alcohols over Cu-Cu2O nanoparticles supported on a porous polythiophene polymer

Figures(9)

  • Porous organic polymer PTPA containing N, S heteroatoms has been prepared via oxidative coupling of thiophene. Then composite material Cu-Cu2O/PTPA was synthesized via solvothermal method and fully characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption desorption, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). Under the mild conditions of 30 ℃ and open air, Cu-Cu2O/PTPA showed good catalytic activity towards selective oxidation of benzyl, allyl, and heterocyclic alcohols employing 2, 2, 6, 6-tetramethylpiperidine 1-oxyl (TEMPO) as a co-catalyst and N-methylimidazole (NMI) as an auxiliary ligand. Due to the high content of N and S heteroatoms in the material, Cu-Cu2O/PTPA showed excellent cycling stability for oxidation of benzyl alcohol, and the yield of product remained above 97% after 9 runs.
  • 加载中
    1. [1]

      Fatiadi A J. Active manganese dioxide oxidation in organic chemistry-Part Ⅱ[J]. Synthesis, 1976,1976(3):133-167. doi: 10.1055/s-1976-23979

    2. [2]

      Muzart J. Chromium-catalyzed oxidations in organic synthesis[J]. Chem. Rev., 1992,92(1):113-140. doi: 10.1021/cr00009a005

    3. [3]

      Slot T K, Eisenberg D, van Noordenne D, Jungbacker P, Rothenberg G. Cooperative catalysis for selective alcohol oxidation with molecular oxygen[J]. Chem. Eur. J., 2016,22(35):12307-12311. doi: 10.1002/chem.201602964

    4. [4]

      Ho W C, Chung K, Ingram A J, Waymouth R M. Pd-catalyzed aerobic oxidation reactions: Strategies to increase catalyst lifetimes[J]. J. Am. Chem. Soc., 2018,140(2):748-757. doi: 10.1021/jacs.7b11372

    5. [5]

      Liu J J, Zou S H, Wu J C, Kobayashi H, Zhao H T, Fan J. Green catalytic oxidation of benzyl alcohol over Pt/ZnO in base-free aqueous medium at room temperature[J]. Chin. J. Catal., 2018,39(6):1081-1089. doi: 10.1016/S1872-2067(18)63022-0

    6. [6]

      Guo Y J, Fan L P, Liu M R, Yang L, Fan G L, Li F. Nitrogen-doped carbon quantum dots-decorated Mg-Al layered double hydroxide-supported gold nanocatalysts for efficient base-free oxidation of benzyl alcohol[J]. Ind. Eng. Chem. Res., 2020,59(2):636-646. doi: 10.1021/acs.iecr.9b04296

    7. [7]

      Li B X, Zhang B S, Nie S B, Shao L Z, Hu L Y. Optimization of plasmon-induced photocatalysis in electrospun Au/CeO2 hybrid nanofibers for selective oxidation of benzyl alcohol[J]. J. Catal., 2017,348:256-264. doi: 10.1016/j.jcat.2016.12.025

    8. [8]

      Wu P P, Cao Y X, Zhao L M, Wang Y, He Z K, Xing W, Bai P, Mintova S, Yan Z F. Formation of PdO on Au-Pd bimetallic catalysts and the effect on benzyl alcohol oxidation[J]. J. Catal., 2019,375:32-43. doi: 10.1016/j.jcat.2019.05.003

    9. [9]

      Galvanin F, Sankar M, Cattaneo S, Bethell D, Dua V, Hutchings G J, Gavriilidis A. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst[J]. Chem. Eng. J., 2018,342:196-210. doi: 10.1016/j.cej.2017.11.165

    10. [10]

      Wilde C A, Ryabenkova Y, Firth I M, Pratt L, Railton J, Bravo-Sanchez M, Sano N, Cumpson P J, Coates P D, Liu X, Conte M. Novel rhodium on carbon catalysts for the oxidation of benzyl alcohol to benzaldehyde: A study of the modification of metal/support interactions by acid pre-treatments[J]. Appl. Catal. A-Gen., 2019,570:271-282. doi: 10.1016/j.apcata.2018.11.006

    11. [11]

      Punniyamurthy T, Rout L. Recent advances in copper-catalyzed oxidation of organic compounds[J]. Coord. Chem. Rev., 2008,252(1/2):134-154.

    12. [12]

      Allen S E, Walvoord R R, Padilla-Salinas R, Kozlowski M C. Aerobic copper-catalyzed organic reactions[J]. Chem. Rev., 2013,113(8):6234-6458. doi: 10.1021/cr300527g

    13. [13]

      Finney L A, O'Halloran T V. Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors[J]. Science, 2003,300(5621):931-936. doi: 10.1126/science.1085049

    14. [14]

      Solomon E I, Sundaram U M, Machonkin T E. Multicopper oxidases and oxygenases[J]. Chem. Rev., 1996,96(7):2563-2606. doi: 10.1021/cr950046o

    15. [15]

      Whittaker J W. Free radical catalysis by galactose oxidase[J]. Chem. Rev., 2003,103(6):2347-2364. doi: 10.1021/cr020425z

    16. [16]

      Thomas F. Ten years of a biomimetic approach to the copper(Ⅱ) radical site of galactose oxidase[J]. Eur. J. Inorg. Chem., 2007(17):2379-2404.

    17. [17]

      Lyons C T, Stack T D P. Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models[J]. Coord. Chem. Rev., 2013,257(2):528-540. doi: 10.1016/j.ccr.2012.06.003

    18. [18]

      Silva T F S, Martins L M D R S. Recent advances in copper catalyzed alcohol oxidation in homogeneous medium[J]. Molecules, 2020,25(3)748. doi: 10.3390/molecules25030748

    19. [19]

      Hoover J M, Stahl S S. BPY-highly practical copper(Ⅰ)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols[J]. J. Am. Chem. Soc., 2011,133(42):16901-16910. doi: 10.1021/ja206230h

    20. [20]

      Marais L, Swarts A J. Biomimetic Cu/nitroxyl catalyst systems for selective alcohol oxidation[J]. Catalysts, 2019,9(5)395. doi: 10.3390/catal9050395

    21. [21]

      Zhu X, Yang D S, Wei W, Jiang M, Li L L, Zhu X B, You J M, Wang H. Magnetic copper ferrite nanoparticles/TEMPO catalyzed selective oxidation of activated alcohols to aldehydes under ligand- and base-free conditions in water[J]. RSC Adv., 2014,4(110):64930-64935. doi: 10.1039/C4RA14152K

    22. [22]

      Zhao H, Chen Q R, Wei L, Jiang Y Y, Cai M Z. A highly efficient heterogeneous aerobic alcohol oxidation catalyzed by immobilization of bipyridine copper(Ⅰ) complex in MCM-41[J]. Tetrahedron, 2015,71(46):8725-8731. doi: 10.1016/j.tet.2015.09.054

    23. [23]

      Feng C M, Cheng L, Ma H Y, Ma L S, Wu Q, Yang J C. Unraveling the mechanism of aerobic alcohol oxidation by a Cu/pytl-β-cyclodextrin/TEMPO catalytic system under air in neat water[J]. Inorg. Chem., 2021,60(18):14132-14141. doi: 10.1021/acs.inorgchem.1c01504

    24. [24]

      Senthilkumar S, Zhong W, Natarajan M, Lu C X, Xu B Y, Liu X M. A green approach for aerobic oxidation of benzylic alcohols catalysed by Cu-Y zeolite/TEMPO in ethanol without additional additives[J]. New J. Chem., 2021,45(2):705-713. doi: 10.1039/D0NJ03776A

    25. [25]

      Chen T, Wang Z Z, Xiao W, Yi C F, Xu Z S. Polystyrene-supported Cu/2, 2, 6, 6-tetramethyl-1-piperidine-N-oxyl catalytic systems constructed by nanoprecipitation and their cooperative catalysis for benzyl alcohol oxidation[J]. ACS Appl. Polym. Mater., 2021,3(10):5171-5179. doi: 10.1021/acsapm.1c00909

    26. [26]

      Chen T Y, Xiao W, Wang Z Z, Gan P F, Yi C F, Xu Z S. Pyrene-containing polymer-supported Cu/TEMPO catalytic systems: Aromatic stacking-enhanced cooperative catalysis[J]. J. Phys. Chem. C, 2022,126(1):309-316. doi: 10.1021/acs.jpcc.1c09972

    27. [27]

      Najafishirtari S, Ortega K F, Douthwaite M, Pattisson S, Hutchings G J, Bondue C J, Tschulik K, Waffel D, Peng B, Deitermann M, Busser G W, Muhler M, Behrens M. A perspective on heterogeneous catalysts for the selective oxidation of alcohols[J]. Chem. Eur. J., 2021,27(68):16809-16833. doi: 10.1002/chem.202102868

    28. [28]

      Tan L X, Tan B E. Hypercrosslinked porous polymer materials: Design, synthesis, and applications[J]. Chem. Soc. Rev., 2017,46(11):3322-3356. doi: 10.1039/C6CS00851H

    29. [29]

      Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem. Rev., 2020,120(2):1438-1511. doi: 10.1021/acs.chemrev.9b00223

    30. [30]

      Debruyne M, Van Speybroeck V, Van Der Voort P, Stevens C V. Porous organic polymers as metal free heterogeneous organocatalysts[J]. Green Chem., 2021,23(19):7361-7434. doi: 10.1039/D1GC02319E

    31. [31]

      Mohamed M G, El-Mahdy A F M, Kotp M G, Kuo S W. Advances in porous organic polymers: syntheses, structures, and diverse applications[J]. Mater. Adv., 2022,3(2):707-733. doi: 10.1039/D1MA00771H

    32. [32]

      Zhang Z W, Jia J, Zhi Y F, Ma S, Liu X M. Porous organic polymers for light-driven organic transformations[J]. Chem. Soc. Rev., 2022,51(7):2444-2490. doi: 10.1039/D1CS00808K

    33. [33]

      Zhan G L, Zhong W, Wei Z H, Liu Z Z, Liu X M. Roles of phenol groups and auxiliary ligand of copper(Ⅱ) complexes with tetradentate ligands in the aerobic oxidation of benzyl alcohol[J]. Dalton Trans., 2017,46(25):8286-8297. doi: 10.1039/C7DT01716B

    34. [34]

      Liu Z Z, Shen Z Q, Zhang N, Zhong W, Liu X M. Aerobic oxidation of alcohols catalysed by Cu(Ⅰ)/NMI/TEMPO system and its mechanistic insights[J]. Catal. Lett., 2018,148(9):2709-2718. doi: 10.1007/s10562-018-2485-2

    35. [35]

      Yang Y L, Zhong W, Ma R N, Lu C X, Shen Z Q, Liu X M, Zhang S H, Wang H M. Engineering the surface of cuprous oxide via surface coordination for efficient catalysis on aerobic oxidation of benzylic alcohols under ambient conditions[J]. Appl. Surf. Sci., 2021,543148840. doi: 10.1016/j.apsusc.2020.148840

    36. [36]

      Ma R N, Xiao Z Y, Zhong W, Lu C X, Shen Z Q, Zhao D, Liu X M. The superiority of cuprous chloride to iodide in the selective aerobic oxidation of benzylic alcohols at ambient temperature[J]. Appl. Organomet. Chem., 2021,35(7).

    37. [37]

      Xu B Y, Senthilkumar S, Zhong W, Shen Z Q, Lu C X, Liu X M. Magnetic core-shell Fe3O4@Cu2O and Fe3O4@Cu2O-Cu materials as catalysts for aerobic oxidation of benzylic alcohols assisted by TEMPO and N-methylimidazole[J]. RSC Adv., 2020,10(44):26142-26150. doi: 10.1039/D0RA04064A

    38. [38]

      Ma J M, Xiao Z Y, Senthilkumar S, Zhong W, Shen Z Q, Lu C X, Jiang X J, Liu X M. Revealing the intrinsic nature of the synergistic effect caused by the formation of heterojunctions in Cu-Cu2O/rGO-NH2 nanomaterials in the catalysis of selective aerobic oxidation of benzyl alcohol[J]. Inorg. Chem., 2021,60(19):14540-14543. doi: 10.1021/acs.inorgchem.1c02385

    39. [39]

      Ma J M, Zhong W, You L L, Pei Y, Lu C X, Xiao Z Y, Shen Z Q, Jiang X J, Qian N L, Liu X M, Zhang S H. Band bending caused by forming heterojunctions in Cu-Cu2O/rGO-NH2 semiconductor materials and surface coordination of N-methylimidazole, and the intrinsic nature of synergistic effect on the catalysis of selective aerobic oxidation of alcohols[J]. Appl. Surf. Sci., 2022,605154563. doi: 10.1016/j.apsusc.2022.154563

    40. [40]

      Wei F, Lu C F, Wang F Y, Yang G C, Chen Z X, Nie J Q. A novel functionalized porous polythiophene polymer network for Au catalyst deposition[J]. Mater. Lett., 2018,212:251-255. doi: 10.1016/j.matlet.2017.10.103

    41. [41]

      Zhao Y X, Li Y P, He Z Y, Yan Z F. Facile preparation of Cu-Cu2O nanoporous nanoparticles as a potential catalyst for non-enzymatic glucose sensing[J]. RSC Adv., 2013,3(7):2178-2181. doi: 10.1039/c2ra22654e

    42. [42]

      Wang A J, Feng J J, Li Z H, Liao Q C, Wang Z Z, Chen J R. Solvothermal synthesis of Cu/Cu2O hollow microspheres for non-enzymatic amperometric glucose sensing[J]. CrystEngComm, 2012,14(4):1289-1295. doi: 10.1039/C1CE05869J

    43. [43]

      Lan X W, Li Q, Zhang Y Z, Li Q, Ricardez-Sandoval L, Bai G Y. Engineering donor-acceptor conjugated organic polymers with boron nitride to enhance photocatalytic performance towards visible-light-driven metal-free selective oxidation of sulfides[J]. Appl. Catal. B-Environ., 2020,277119274. doi: 10.1016/j.apcatb.2020.119274

    44. [44]

      Sharma A S, Kaur H, Shah D. Selective oxidation of alcohols by supported gold nanoparticles: Recent advances[J]. RSC Adv., 2016,6(34):28688-28727. doi: 10.1039/C5RA25646A

    45. [45]

      Feng C M, Cheng L, Ma H Y, Ma L S, Wu Q, Yang J C. Unraveling the Mechanism of Aerobic Alcohol oxidation by a Cu/pytl-β-cyclodextrin/TEMPO catalytic system under air in neat water[J]. Inorg. Chem., 2021,60(18):14132-14141. doi: 10.1021/acs.inorgchem.1c01504

    46. [46]

      Feng X, Lv P P, Sun W, Han X Y, Gao L F, Zheng G G. Reduced graphene oxide-supported Cu nanoparticles for the selective oxidation of benzyl alcohol to aldehyde with molecular oxygen[J]. Catal. Commun., 2017,99:105-109. doi: 10.1016/j.catcom.2017.05.013

    47. [47]

      Rana S, Jonnalagadda S B. Cu doped amine functionalized graphene oxide and its scope as catalyst for selective oxidation[J]. Catal. Commun., 2017,100:183-186. doi: 10.1016/j.catcom.2017.07.002

  • 加载中
    1. [1]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(5)
  • Abstract views(818)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return