Citation: Fu-Wei YANG, Jing-Chen YAN, Yi-Jie JIANG, Ting LI, Shu-Yu GUO, Kun ZHANG, Yan LIU. Application of inorganic calcium materials in surface protection of limestone cultural relics[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1209-1222. doi: 10.11862/CJIC.2023.107 shu

Application of inorganic calcium materials in surface protection of limestone cultural relics

  • Corresponding author: Yan LIU, liuyan@nwu.edu.cn
  • Received Date: 10 November 2022
    Revised Date: 20 April 2023

Figures(10)

  • Due to their good durability and compatibility, calcium oxalate, hydroxyapatite, and calcium carbonate have been extensively studied as coating materials for the conservation of limestone relics in recent years. In this paper, the characteristics, preparation methods, and practical applications of the protective films composed of the above materials are reviewed. In terms of acid resistance of the materials, calcium oxalate is the best, then hydroxyapatite and calcium carbonate is number three. However, from the point of compatibility between limestone relics and protective materials, the law is the opposite. That is, calcium carbonate is the best, next comes hydroxyapatite, follows by calcium oxalate. Generally, inorganic calcium protective films can be prepared by both chemical and biological methods. Specifically, calcium oxalate and hydroxyapatite protective films can be obtained by the chemical reaction between limestones or their weathering crust and protectants such as oxalic acid, phosphoric acid, and their derivatives. The preparation conditions including the concentration, temperature, pH, and functional additives of the protectant are vital to the protective performance of the films. The calcium carbonate protective film, however, can be prepared by both chemical and biological methods. The former involves the carbonation reaction of all kinds of calcium precursors with carbon dioxide in the air. Carbon dioxide or carbonate ions, however, can be produced by bacteria or fungi, which can combine with calcium cations to form calcium carbonate deposition film. Calcium oxalate, hydroxyapatite, and calcium carbonate films began to be used in the surface protection of limestone relics around the world. Nevertheless, in practical operation, the preparation of the protective films with satisfying performance is still challenging, especially for the immovable stone relics with irregular shapes. So, greater efforts in the research of protective materials and technologies are still necessary in the future.
  • 加载中
    1. [1]

      FENG Z G, LIU X Z, HAN S L, MA Q. Study on geochemical behavior of high field strength elements during weathering of carbonate rocks: Evidence from leaching experiment on carbonate rock[J]. Carsologica Sinica, 2018,37(3):315-329.  

    2. [2]

      SONG R S. Longmen Grottoes in Luoyang[J]. The Silk Road, 2000,4:60-61.  

    3. [3]

      GAO X S. Remains of the Six Dynasties[J]. Architecture & Culture, 2021,7:264-269.  

    4. [4]

      LAO B M. Discussion on some problems of Fei Lai Feng statues[J]. Cultural Relics, 1986,1:62-69.  

    5. [5]

      ZHANG T, LI D Q, ZHANG Z J. Damage categories and deterioration mechanism of stone cultural relics of white marble in Beijing[J]. Geotechnical Investigation & Surveying, 2016,44(11):7-13.  

    6. [6]

      JIANG N, ZHANG B J, HU Y L, XIANG L Y. Discussion on the stone materials used in government buildings of the Ming and Qing dynasty[J]. Stone, 2021,1:56-60.  

    7. [7]

      TAN C H, LI H Y, ZHANG X R, ZHANG Z Y. The Analysis of weathering mechanism caused by acid rain and the control technology on carbonate stones relics[J]. Study on Natural and Cultural Heritage, 2019,4(8):33-38.  

    8. [8]

      CHEN W C, LI L, SHAO M S, LIANG X Z, Afolagboy L O. Experimental study on carbonate dissolution and erosion effect under attack of simulated sulphuric acid rain[J]. Chinese Journal of Geotechnical Engineering, 2017,39(11):2058-2067. doi: 10.11779/CJGE201711014

    9. [9]

      ZHANG B J, YIN H Y, TIE J H. The problems and new materials in the conservation of historic stone structures[J]. Sciences of Conservation and Archaeology, 2000,12(2):1-4.  

    10. [10]

      JIN Z Q, LIU L C. Cleaning, protection, and repair of white marble in the Imperial Palace[J]. Stone, 2006,5:26-33.  

    11. [11]

      ZHANG B J, TIE J H. The problems and new materials in the conservation of carbonate stones[J]. Stone, 1999,12:5-7.  

    12. [12]

      ZHANG B J. Corrosion, protection, and reinforcement of stone[J]. Stone, 1998,12:16-17. doi: 10.14030/j.cnki.scaa.1998.12.009

    13. [13]

      Sims C B, Lenora C U, Furgal J C. Hybrid tri-cure organo-silicon coatings for monument preservation[J]. Coatings, 2022,12(8)1098. doi: 10.3390/coatings12081098

    14. [14]

      Pia G, Corcione C, Striani R, Casnedi L, Sanna U. Coating's influence on water vapour permeability of porous stones typically used in cultural heritage of Mediterranean area: Experimental tests and model controlling procedure[J]. Prog. Org. Coat., 2017,102:239-246. doi: 10.1016/j.porgcoat.2016.10.021

    15. [15]

      Corcione C E, De Simone N, Santarelli M L, Frigione M. Protective properties and durability characteristics of experimental and commercial organic coatings for the preservation of porous stone[J]. Prog. Org. Coat., 2017,103:193-203. doi: 10.1016/j.porgcoat.2016.10.037

    16. [16]

      Cappitelli F, Sorlini C. Microorganisms attack synthetic polymers in items representing our cultural heritage[J]. Appl. Environ. Microbiol., 2008,74(3):564-569. doi: 10.1128/AEM.01768-07

    17. [17]

      Bugani S, Camaiti M, Morselli L, Van de Casteele E, Janssens K. Investigating morphological changes in treated vs. untreated stone building materials by X-ray micro-CT[J]. Anal. Bioanal. Chem., 2008,391(4):1343-1350. doi: 10.1007/s00216-008-1946-7

    18. [18]

      LIU Q, ZHANG B J, LONG M. The harmful effects of surface chemical protection of historic stones[J]. Sciences of Conservation and Archaeology, 2006,18(2):1-7. doi: 10.3969/j.issn.1005-1538.2006.02.001

    19. [19]

      Sierra-Fernandez A, Gomez-Villalba L S, la Rosa-García D, Gomez-Cornelio S, Quintana P, Rabanal M E, Fort R. Inorganic nanomaterials for the consolidation and antifungal protection of stone heritage[J]. Advanced Materials for the Conservation of Stone, 2018:125-149.

    20. [20]

      Sassoni E, Graziani G, Ridolfi G, Bignozzi M C, Franzoni E. Thermal behavior of Carrara marble after consolidation by ammonium phosphate, ammonium oxalate and ethyl silicate[J]. Mater. Des., 2017,120:345-353. doi: 10.1016/j.matdes.2017.02.040

    21. [21]

      Ceza T. Calcium Oxalate: A surface treatment for limestone[J]. J. Conserv. Mus. Stud., 1998,4:6-10. doi: 10.5334/jcms.4982

    22. [22]

      LIU Y, HE L, YANG F W, ZHANG K, SUN M L, ZHANG B J. Research review of calcium oxalate protective material for the conservation of carbonate cultural relics[J]. Journal of Northwest University (Natural Science Edition), 2021,51(3):390-396. doi: 10.16152/j.cnki.xdxbzr.2021-03-007

    23. [23]

      Rusakov A, Kuz'mina M, Frank-Kamenetskaya O. Biofilm medium chemistry and calcium oxalate morphogenesis[J]. Molecules, 2021,26(16)5030. doi: 10.3390/molecules26165030

    24. [24]

      Liu Q, Zhang B J, Shen Z Y, Lu H. A crude protective film on historic stones and its artificial preparation through biomimetic synthesis[J]. Appl. Surf. Sci., 2006,253:2625-2632. doi: 10.1016/j.apsusc.2006.05.032

    25. [25]

      Wilkins S J, Compton R G, Viles H A. The effect of surface pretreatment with polymaleic acid, phosphoric acid, or oxalic acid on the dissolution kinetics of calcium carbonate in aqueous acid[J]. J. Colloid Interface Sci., 2001,242(2):378-385. doi: 10.1006/jcis.2001.7823

    26. [26]

      Burgos-Cara A, Putnis C V, Ortega-Huertas M, Ruiz-Agudo E. Influence of pH and citrate on the formation of oxalate layers on calcite revealed by in situ nanoscale imaging[J]. CrystEngComm, 2017,19:3420-3429. doi: 10.1039/C7CE00305F

    27. [27]

      Burgos-Cara A, Ruiz-Agudo E, Rodriguez-Navarro C. Effectiveness of oxalic acid treatments for the protection of marble surfaces[J]. Mater. Des., 2017,115:82-92. doi: 10.1016/j.matdes.2016.11.037

    28. [28]

      King H E, Mattner D C, Plümper O, Geisler T, Putnis A. Forming cohesive calcium oxalate layers on marble surfaces for stone conservation[J]. Cryst. Growth Des., 2014,14(8):3910-3917. doi: 10.1021/cg500495a

    29. [29]

      He L, Wang L, Liu Y, Yang F W, Gao X. Preparation of calcium oxalate film on the surface of historic carbonate stone in a humid environment[J]. New J. Chem., 2022,46:1099-1104. doi: 10.1039/D1NJ03649A

    30. [30]

      YANG F W, LIU Y, HE L. A method for preparing calcium glycolate protective film on the surface of carbonate stone and cultural relics: CN115594524A. 2023-01-13.

    31. [31]

      Mifsud T, Cassa R J. The treatment of weathered globigerina limestone: The surface conversion of calcium carbonate to calcium oxalate[J]. Heritage, Weathering & Conservation, 2006,2:727-734.

    32. [32]

      Pinna D, Salvadori B, Porcinai S. Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble[J]. Constr. Build. Mater., 2011,25(5):2723-2732. doi: 10.1016/j.conbuildmat.2010.12.023

    33. [33]

      Doherty B, Pamplona M, Selvaggi R. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering[J]. Appl. Surf. Sci., 2007,253(10):4477-4484. doi: 10.1016/j.apsusc.2006.09.056

    34. [34]

      Liu Q, Zhang B J. Syntheses of a novel nanomaterial for conservation of historic stones inspired by nature[J]. Mater. Lett., 2007,61(28):4976-4979. doi: 10.1016/j.matlet.2007.03.104

    35. [35]

      Liu Y, Dong T, Zhang K, Yang F W, Wang L. Preliminary study of the targeted cleaning of an artificial Gypsum Layer on white marble[J]. Coatings, 2021,11(1)37. doi: 10.3390/coatings11010037

    36. [36]

      Liu Y, Yang F W, Wang L. Exploratory research about the selective cleaning of the calcium sulfate sediments on archaeological potteries[J]. New J. Chem., 2020,44(18):7412-7416. doi: 10.1039/D0NJ00621A

    37. [37]

      YANG F W, LIU Y. A method for selective removal of gypsum on the surfaces of stone artifacts and stone: CN201510621975.0. 2015-09-28.

    38. [38]

      Liu Y, Yang F W, Zuo G F. Protection of the surface weathering stone artworks by a chemical conversion method[J]. Constr. Build. Mater., 2018,182:210-214. doi: 10.1016/j.conbuildmat.2018.06.108

    39. [39]

      Maiorel L, Aragoni M C, Carcangiu A G. Synthesis, characterization and DFT-modeling of novel agents for the protection and restoration of historical calcareous stone substrates[J]. J. Colloid Interface Sci., 2015,448:320-330. doi: 10.1016/j.jcis.2015.01.092

    40. [40]

      Doherty B, Pamplona M, Miliani C, Matteini M, Sgamellotti A, Brunetti B. Durability of the artificial calcium oxalate protective on two Florentine monuments[J]. J. Cult. Herit., 2007,8:186-192. doi: 10.1016/j.culher.2006.12.002

    41. [41]

      Dreyfuss T, Cassar J. Onsite testing of ammonium oxalate treatment applied to historical salt-infested limestone[J]. Journal of Civil Engineering and Architecture, 2017,11(2):175-183.

    42. [42]

      Liu Q, Zhang B J, Yang G L. Investigation on application of biomimetic technology to the conservation of Longmen Grottoes[J]. Applied Mechanics and Materials, 2010,26:43-47.

    43. [43]

      Liu D M, Chou H M, Wu J D. Hydroxyl apatite coating via amorphous calcium phosphate[J]. Mater. Chem. Phys., 1994,37(1):39-44. doi: 10.1016/0254-0584(94)90068-X

    44. [44]

      QIAN G M, WANG J, SUN X Y, LIU W, WU Z K, WAN J Y, ZHAO D S. Effect of Fe3+ on dissolution behavior of hydroxyapatite[J]. Acta Mineralogica Sinica, 2017,37(1/2):49-52.  

    45. [45]

      LU J, LIANG L F, WENG J, JIANG F X. Influence of anti-acid capability and sintering performance on hydroxyapatite ceramic introduced LiCl[J]. Materials Reports, 2010,24(S1):395-397.  

    46. [46]

      Sassoni E, Graziani G, Franzoni E. An innovative phosphate-based consolidant for limestone. Part 1: Effectiveness and compatibility in comparison with ethyl silicate[J]. Constr. Build. Mater., 2016,102:918-930.

    47. [47]

      Naidu S, Scherer G W. Nucleation, growth and evolution of calcium phosphate films on calcite[J]. J. Colloid Interface Sci., 2014,435:128-137.

    48. [48]

      Arocena J M, Hall K. Calcium phosphate coatings on the Yalour Islands, Antarctica: Formation and geomorphic implications[J]. Arct. Antarct. Alp. Res., 2003,35(2):233-241.

    49. [49]

      Singh M R, Ganaraj K, Sable P D. Surface mediated Ca-phosphate biomineralization and characterization of the historic lime mortar, Janjira Sea Fort, India[J]. J. Cult. Herit., 2020,44:110-119.

    50. [50]

      Thompson M, Wilkins S J, Compton R G, Viles H A. Channel flow cell studies on the evaluation of surface pretreatments using phosphoric acid or polymaleic acid for calcite stone protection[J]. J. Colloid Interface Sci., 2003,259(2):338-345.

    51. [51]

      Yang F W, Liu Y, Zuo G F. Biomimetic fluorapatite films for conservation of historic calcareous stones[J]. Chin. Sci. Bull., 2012,57(3):1590-1594.

    52. [52]

      Yang F W, Liu Y, Zuo G F. Hydroxyapatite conversion layer for the preservation of surface gypsification marble relics[J]. Corrosion Sci., 2014,88:6-9.

    53. [53]

      Yang F W, Liu Y. Artificial hydroxyapatite film for the conservation of outdoor marble artworks[J]. Mater. Lett., 2014,124:201-203.

    54. [54]

      Graziani G, Sassoni E, Franzoni E, Scherer G W. Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance[J]. Appl. Surf. Sci., 2016,368:241-257.

    55. [55]

      Graziani G, Sassoni E, Scherer G W, Franzoni E. Resistance to simulated rain of hydroxyapatite and calcium oxalate-based coatings for protection of marble against corrosion[J]. Corrosion Sci., 2017,127:168-174.

    56. [56]

      Xu F, Li D. The use of CTAB as an addition of DAP for improvement resisting acid rain on limestone[J]. Appl. Surf. Sci., 2017,422:1059-1066.

    57. [57]

      LIU Y, YANG F W. A method for preparing a calcium phosphate protective layer on the surface of gypsum products: CN201911073351.4. 2022-01-14.

    58. [58]

      Dong T, Liu Y, He L, Yang F, Zhang K. Preparation of hydroxyapatite coating for the conservation of gypsum crust on historic limestones[J]. Mater. Lett.: X, 2021,12100103.

    59. [59]

      Ma X, Balonis M, Pasco H, Toumazou M, Counts D, Kakoulli I. Evaluation of hydroxyapatite effects for the consolidation of a Hellenistic-Roman rock-cut chamber tomb at Athienou-Malloura in Cyprus[J]. Constr. Build. Mater., 2017,150:333-344.

    60. [60]

      Sassoni E. Hydroxyapatite and other calcium phosphates for the conservation of cultural heritage: A review[J]. Materials, 2018,11557.

    61. [61]

      DONG T L. Study on protective treatment of surface gypsification carbonate rock relics. Xi'an: Northwest University, 2021: 1-10

    62. [62]

      Beck K, Al-Mukhtar M. Cyclic wetting-drying aging test and patina formation on tuffeau limestone[J]. Environ. Earth Sci., 2014,71:2361-2372.

    63. [63]

      Timoncini A, Costantini F, Bernardi E, Martini C, Mugnai F, Mancuso F P, Chiavari C. Insight on bacteria communities in outdoor bronze and marble artefacts in a changing environment[J]. Sci. Total Environ., 2022,850157804.

    64. [64]

      Mura F, Cirigliano A, Bracciale M P, Rinaldi T. Characterization of nanostructured calcium carbonate found in two ancient Etruscan tombs. AIP Conference Proceedings[J]. AIP Publishing LLC, 2020,2257(1)020011.

    65. [65]

      Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz M T. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization[J]. Appl. Environ. Microbiol., 2003,69(4):2182-2193.

    66. [66]

      Delalieux F, Cardell C, Todorov V, Dekov V, Van Grieken R. Environmental conditions controlling the chemical weathering of the Madara Horseman monument, NE Bulgaria[J]. J. Cult. Herit., 2001,2:43-54.

    67. [67]

      Cirigliano A, Tomassetti M C, Di Pietro M, Mura F, Maneschi M L, Gentili M D, Rinaldi T. Calcite moonmilk of microbial origin in the Etruscan Tomba degli Scudi in Tarquinia, Italy[J]. Sci. Rep., 2018,8(1)15839.

    68. [68]

      Favaro M, Tomasin P, Ossola F, Vigato P A. A novel approach to consolidation of historical limestone: The calcium alkoxides[J]. Appl. Organometal. Chem., 2008,22:698-704.

    69. [69]

      YANG G J, JIN P J, ZHANG W Q. Synthesis of calcium based consolidation coating based on calcium alkoxide for historical relics[J]. New Chemical Materials, 2014,9(42):141-143.  

    70. [70]

      Natali I, Tomasin P, Becherini F, Bernardi A, Ciantelli C, Favaro M, Bonazza A. Innovative consolidating products for stone materials: Field exposure tests as a valid approach for assessing durability[J]. Herit. Sci., 2015,3(6):1-13.

    71. [71]

      Turova N Y, Turevskaya E P, Kessler V G, Yanovskaya M I. The Chemistry of Metal Alkoxides. Berlin: Springer Science & Business Media, 2007: 159

    72. [72]

      Wang L, He L, Liu Y, Yang F W, Zhang K, Chen X N, Gao X. A novel immersive calcium carbonate coating for conservation of limestone relics with a gypsum crust[J]. New J. Chem., 2022,46(33):15967-15975.

    73. [73]

      LIU Y, YANG F W. A method for preparing calcium carbonate by uniform precipitation: ZL201910049128. X. 2019-04-05.

    74. [74]

      Krajewska B. Urease-aided calcium carbonate mineralization for engineering applications: A review[J]. J. Adv. Res., 2018,13:59-67.

    75. [75]

      SUN Y Z, CHEN Q. Study of stimulated calcite precipitation by bacteria in historic stone consolidation[J]. Sciences of Conservation and Archaeology, 2009,21(3):29-32.  

    76. [76]

      Ortega-Villamagua E, Gudiño-Gomezjurado M, Palma-Cando A. Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials[J]. Molecules, 2020,25(23)5499.

    77. [77]

      LI Q F, HE X, CHEN C, YANG Q Q, LÜ Z Z. Effect of two psychrotrophic calcium carbonate mineralized bacteria on the surface repair of marble[J]. Journal of Synthetic Crystals, 2018,47(1):172-178.  

    78. [78]

      Elert K, Ruiz-Agudo E, Jroundi F, Gonzalez-Muñoz M T, Fash B W, Fash W L, Rodriguez-Navarro C. Degradation of ancient Maya carved tuff stone at Copan and its bacterial bioconservation[J]. NPJ Mater. Degrad., 2021,5(1)44.

    79. [79]

      Perito B, Marvasi M, Barabesi C, Mastromei G, Bracci S, Vendrell M, Tiano P. A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: Biotechnological perspectives for monumental stone reinforcement[J]. J. Cult. Herit., 2014,15(4):345-351.

    80. [80]

      Rodriguez-Navarro C, Jroundi F, Gonzalez-Muñoz M T. Stone consolidation by bacterial carbonatogenesis: Evaluation of in situ applications[J]. Restoration of Buildings and Monuments, 2015,21(1):9-20.

    81. [81]

      Jroundi F, Schiro M, Ruiz-Agudo E, Elert K, Martín-Sánchez I, González-Muñoz M T, Rodriguez-Navarro C. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities[J]. Nat. Commun., 2017,8(1)279.

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    6. [6]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(8)
  • Abstract views(2291)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return