Citation: Meng-Fei HAN, Jun GU, Sheng-Ding XUE, Su-Jun ZHU, Run-Sheng HUANG. Preparation and properties of platinum-cobalt-manganese alloy catalysts for fuel cells[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1253-1260. doi: 10.11862/CJIC.2023.105 shu

Preparation and properties of platinum-cobalt-manganese alloy catalysts for fuel cells

  • Corresponding author: Jun GU, junguca@nju.edu.cn
  • Received Date: 1 March 2023
    Revised Date: 22 May 2023

Figures(6)

  • The precursor of PtCoMn alloy catalyst was synthesized with ethylene glycol as reducing agent under microwave heating. After high temperature heat treatment, the alloy was formed. Finally, the PtCoMn alloy catalyst was obtained by acid treatment. The composition, structure, and morphology of the catalyst were characterized by elemental analysis, X-ray diffraction, and transmission electron microscopy. The surface electronic structure and properties of the catalyst were studied by X-ray photoelectron spectroscopy and electrochemical workstation. The results showed that the activity and durability of the catalyst can be improved by the addition of proper amount of Mn. The mass specific activity (MA) of PtCoMn/C catalyst was 0.666 A·mgPt-1 at 0.9 V (vs RHE), which was 2.66 times that of conventional Pt/C and 1.30 times that of PtCo/C catalyst. In the 30 000-cycle catalyst accelerated durability test, electrochemical active area (ECSA) and MA of PtCoMn/C alloy catalyst only decreased by 6.9% and 27.1%, both of which were much lower than Pt/C catalyst.
  • 加载中
    1. [1]

      Banham D, Ye S Y. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective[J]. ACS Energy Lett., 2017,2(3):629-638. doi: 10.1021/acsenergylett.6b00644

    2. [2]

      Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012,486(7401):43-51. doi: 10.1038/nature11115

    3. [3]

      Chung D Y, Yoo J M, Sung Y E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts[J]. Adv. Mater., 2018,30(42)1704123. doi: 10.1002/adma.201704123

    4. [4]

      Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004,108(46):17886-17892. doi: 10.1021/jp047349j

    5. [5]

      WANG D, LIU L L, LI M X, PAN X N, ZHAO Y H, ZHANG J Q, An M Z, YANG P X. Preparation of platinum nanoparticles via electrochemical method in N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate ionic liquid[J]. Chinese J. Inorg. Chem., 2018,34(2):409-414.  

    6. [6]

      Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nat. Mater., 2007,6(3):241-247. doi: 10.1038/nmat1840

    7. [7]

      Liu M L, Zhao Z P, Duan X F, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Adv. Mater., 2019,31(6)1802234. doi: 10.1002/adma.201802234

    8. [8]

      Du L, Prabhakaran V, Xie X H, Park S, Wang Y, Shao Y Y. Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: Stability challenges and material solutions[J]. Adv. Mater., 2021,33(6)1908232. doi: 10.1002/adma.201908232

    9. [9]

      Xia W, Mahmood A, Liang Z B, Zou R Q, Guo S J. Earth-abundant nanomaterials for oxygen reduction[J]. Angew. Chem. Int. Ed., 2016,55(8):2650-2676. doi: 10.1002/anie.201504830

    10. [10]

      Tan X H, Prabhudev S, Kohandehghan A, Karpuzov D, Botton G A, Mitlin D. Pt-Au-Co alloy electrocatalysts demonstrating enhanced activity and durability toward the oxygen reduction reaction[J]. ACS Catal., 2015,5(3):1513-1524. doi: 10.1021/cs501710b

    11. [11]

      Xia B Y, Wu H B, Li N, Yan Y, Lou X W, Wang X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties[J]. Angew. Chem. Int. Ed., 2015,54(12):3797-3801. doi: 10.1002/anie.201411544

    12. [12]

      ZHU Y, GU J, YU T, HE H T, YAO R. Synthesis and property of platinum-cobalt alloy nano catalyst[J]. Chinese J. Inorg. Mater., 2021,36(3):299-307.  

    13. [13]

      Huang J, Peng B S, Stracensky T, Liu Z Y, Zhang A, Xu M J, Liu Y, Zhao Z P, Duan X F, Jia Q Y, Huang Y. 1D PtCo nanowires as catalysts for PEMFCs with low Pt loading[J]. Sci. China-Mater., 2021,65(3):704-711.

    14. [14]

      Choi J, Cho J, Roh C W, Kim B S, Choi M S, Jeong H, Ham H C, Lee H. Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells[J]. Appl. Catal. B-Environ., 2019,247:142-149. doi: 10.1016/j.apcatb.2019.02.002

    15. [15]

      Jang I, Lee S, Lee E, Lee D W, Park H Y, Choi B B, Ham H C, Yoo S J. Plasma-induced alloying as a green technology for synthesizing ternary nanoparticles with an early transition metal[J]. Nano Today, 2021,41101316. doi: 10.1016/j.nantod.2021.101316

    16. [16]

      Liang J S, Li N, Zhao Z L, Ma L, Wang X M, Li S Z, Liu X, Wang T Y, Du Y P, Lu G, Han J T, Huang Y H, Su D, Li Q. Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode[J]. Angew. Chem. Int. Ed., 2019,58(43):15471-15477. doi: 10.1002/anie.201908824

    17. [17]

      Kim J, Hong Y J, Lee K, Kim J Y. Highly stable Pt-based ternary systems for oxygen reduction reaction in acidic electrolytes[J]. Adv. Energy Mater., 2020,10(41)2002049. doi: 10.1002/aenm.202002049

    18. [18]

      Seo A, Lee J, Han K, Kim H. Performance and stability of Pt-based ternary alloy catalysts for PEMFC[J]. Electrochim. Acta, 2006,52(4):1603-1611. doi: 10.1016/j.electacta.2006.03.097

    19. [19]

      Ishida M, Matsutani K. Development of Pt-Co-Mn ternary alloy catalyst for PEFCs[J]. ECS Trans., 2014,64(3):107-112. doi: 10.1149/06403.0107ecst

    20. [20]

      Huang M H, Liu T, Hou K, Huang M H, Liu T, Hou K, Sun F, Wu C X, Guan L H. ZrO2 anchored core-shell Pt-Co alloy particles through direct pyrolysis of mixed Pt-Co-Zr salts for improving activity and durability in proton exchange membrane fuel cells[J]. Int. J. Hydrog. Energy, 2022,47(10):6679-6690. doi: 10.1016/j.ijhydene.2021.12.034

    21. [21]

      Feng S Q, Lu J J, Luo L, Qian G F, Chen J L, Abbo H S, Titinchi S J J, Yin S B. Enhancement of oxygen reduction activity and stability via introducing acid-resistant refractory Mo and regulating the near-surface Pt content[J]. J. Energy Chem., 2020,51:246-252. doi: 10.1016/j.jechem.2020.03.063

    22. [22]

      Hanif S, Shi X, Iqbal N, Noor T, Anwar R, Kannan A M. ZIF derived PtNiCo/NC cathode catalyst for proton exchange membrane fuel cell[J]. Appl. Catal. B-Environ., 2019,258117947. doi: 10.1016/j.apcatb.2019.117947

    23. [23]

      Mukherjee P, Patil I, Kakade B, Das S K, Sahu A K, Swami A. Methodical designing of Pt3-xCo0.5+yNi0.5+y/C (x=0, 1, 2;y=0, 0.5, 1) particles using a single-step solid state chemistry method as efficient cathode catalyst in H2-O2 fuel cells[J]. Catal. Today, 2022. doi: 10.1016/j.cattod.2022.11.024

    24. [24]

      Hu B, Yuan J L, Zhang J, Shu Q H, Guan D Q, Yang G M, Zhou W, Shao Z P. High activity and durability of a Pt-Cu-Co ternary alloy electrocatalyst and its large-scale preparation for practical proton exchange membrane fuel cells[J]. Compos. Pt. B-Eng., 2021,222109082. doi: 10.1016/j.compositesb.2021.109082

    25. [25]

      Alonso F J P, Mccarthy D N, Nierhoff A, Fernandez P H, Strebel C, Stephens I E L, Nielsen J H, Chorkendorff I. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles[J]. Angew. Chem. Int. Ed., 2012,51:4641-4643. doi: 10.1002/anie.201200586

    26. [26]

      Park Y C, Kakinuma K, Uchida M, Tryk D A, Kamino T, Uchida H, Watanabe M. Investigation of the corrosion of carbon supports in polymer electrolyte fuel cells using simulated start-up/shutdown cycling[J]. Electrochim. Acta, 2013,91:195-207. doi: 10.1016/j.electacta.2012.12.082

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    4. [4]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    5. [5]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(12)
  • Abstract views(1063)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return