Citation: Yi-Min SUN, Zhan-Peng WANG, Peng-Fei TONG, Fei XIAO. Application of MXene for precise cancer diagnosis and treatment[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1441-1462. doi: 10.11862/CJIC.2023.103 shu

Application of MXene for precise cancer diagnosis and treatment

Figures(8)

  • Cancer is the second health-threatening risk for humans. Accurate screening and diagnosis technology as well as efficient treatment approaches are the key factors to cure cancer. The rapid development of nanotechnology has brought new ideas and fresh perspectives to cancer diagnosis and treatment. MXene, as a new two-dimensional material, possesses a large specific surface area, high conductivity, good hydrophilicity, and excellent biocompatibility. It can be used as an excellent substrate material to construct a biosensor platform with high compatibility and catalytic performance by combining it with other nanomaterials for the accurate detection of cancer biomarkers. In addition, MXene is an ideal tumor photothermal therapy (PTT) reagent with adjustable components, strong absorption, and high photothermal conversion efficiency in the visible-to-infrared region. To date, few reviews regarding the application of MXene in cancer diagnosis and treatment are reported. In view of this, we summarize the recent advances of Mxene-based biosensing platforms for the detection of different cancer markers, and also conclude the latest research progress of different MXene materials in PTT, and then put forward the challenges and development trends of MXene in cancer diagnosis and treatment.
  • 加载中
    1. [1]

      Huang W, Xu Y, Wang Z P, Liao K, Zhang Y, Sun Y M. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells[J]. Talanta, 2022,249123612. doi: 10.1016/j.talanta.2022.123612

    2. [2]

      Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Adv Mater., 2014,27(7):992-1005.

    3. [3]

      Iravani S, Varma R S. Greener synthesis of lignin nanoparticles and their applications[J]. Green Chem., 2020,22(3):612-636. doi: 10.1039/C9GC02835H

    4. [4]

      Iravani S, Varma R S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots[J]. A review. Environ. Chem. Lett., 2020,18(3):703-727. doi: 10.1007/s10311-020-00984-0

    5. [5]

      Chen Z Y, Asif M, Wang R C, Li Y, Zeng X, Yao W T, Sun Y M, Liao K. Recent trends in synthesis and applications of porous MXene assemblies: A topical review[J]. Chem. Rec., 2022,22(3)e202100261.

    6. [6]

      Nasrollahzadeh M, Sajadi S M, Issaabadi Z, Sajjadi M. Biological sources used in green nanotechnology//Nasrollahzadeh M, Sajadi S M, Sajjadi M, Issaabadi Z, Atarod M. An introduction to green nanotechnology[J]. Elsevier, 2019:81-111.

    7. [7]

      Wang R C, Luo S H, Xiao C, Chen Z Y, Li H S, Asif M, Chan V, Liao K, Sun Y M. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance[J]. Electrochim. Acta, 2021,386138420. doi: 10.1016/j.electacta.2021.138420

    8. [8]

      Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Appl. Mater. Interfaces, 2019,11(40):36589-36597. doi: 10.1021/acsami.9b10606

    9. [9]

      CHEN L, FENG W, CHEN Y.. MXene-based medical materials in materdicine[J]. Materials China, 2022,41(9):758-768.  

    10. [10]

      Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nat. Rev. Mater., 2017,2(2):1-17.

    11. [11]

      Ding L, Li L, Liu Y C, Wu Y, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Effective ion sieving with Ti3C2TX MXene membranes for production of drinking water from seawater[J]. Nat. Sustain., 2020,3(4):296-302. doi: 10.1038/s41893-020-0474-0

    12. [12]

      SUN Y M, LI H S, CHEN Z Y, WANG D, WANG Z P, XIAO F. The application of MXene in electrochemical sensor[J]. Prog. Chem., 2022,34(2):259-271.  

    13. [13]

      Zheng W, Zhang P G, Tian W B, Qin X, Zhang Y M, Sun Z M. Alkali treated Ti3C2TX MXenes and their dye adsorption performance[J]. Mater. Chem. Phys., 2018,206:270-276. doi: 10.1016/j.matchemphys.2017.12.034

    14. [14]

      Yin W Y, Yu J, Lv F, Yan L, Zheng L R, Gu Z J, Zhao Y L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications[J]. ACS Nano, 2016,10(12):11000-11011. doi: 10.1021/acsnano.6b05810

    15. [15]

      Rasool K, Mahmoud K A, Johnson D J, Helal M, Berdiyorov G R, Gogotsi Y. Efficient antibacterial membrane based on two-dimensional Ti3C2TX (MXene) nanosheets[J]. Sci. Rep., 2017,7(1)1598. doi: 10.1038/s41598-017-01714-3

    16. [16]

      LI C W, AN Q, CHEN C, LI D W, ZHANG W, FU Y J.. Preparation of MXenes and their photothermal properties for cancer therapy[J]. Polymer Bulletin, 2023,36(2):172-182. doi: 10.14028/j.cnki.1003-3726.2023.02.004

    17. [17]

      Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects[J]. Chem. Eng. J., 2020,388124340. doi: 10.1016/j.cej.2020.124340

    18. [18]

      Nasrollahzadeh M, Sajjadi M, Iravani S, Varma R S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives[J]. J. Hazard. Mater., 2021,401123401. doi: 10.1016/j.jhazmat.2020.123401

    19. [19]

      Nasrollahzadeh M, Sajjadi M, Iravani S, Varma R S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review[J]. Carbohydr. Polym., 2021,251116986. doi: 10.1016/j.carbpol.2020.116986

    20. [20]

      Gan D F, Huang Q, Dou J B, Huang H Y, Chen J Y, Liu M Y, Wen Y Q, Yang Z Y, Zhang X Y, Wei Y. Bioinspired functionalization of MXenes (Ti3C2TX) with amino acids for efficient removal of heavy metal ions[J]. Appl. Surf. Sci., 2020,504144603. doi: 10.1016/j.apsusc.2019.144603

    21. [21]

      Zhan X X, Si C, Zhou J, Sun Z M. MXene and MXene-based composites: synthesis, properties and environment-related applications[J]. Nanoscale Horiz., 2020,5(2):235-258. doi: 10.1039/C9NH00571D

    22. [22]

      Lin H, Gao S S, Dai C, Chen Y, Shi J L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-Ⅰ and NIR-Ⅱ biowindows[J]. J. Am. Chem. Soc., 2017,139(45):16235-16247. doi: 10.1021/jacs.7b07818

    23. [23]

      Dai C, Chen Y, Jing X X, Xiang L H, Yang D Y, Lin H, Liu Z, Han X X, Wu R. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation[J]. ACS Nano, 2017,11(12):12696-12712. doi: 10.1021/acsnano.7b07241

    24. [24]

      Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead[J]. Adv. Sci., 2018,5(10)1800518. doi: 10.1002/advs.201800518

    25. [25]

      George S M, Kandasubramanian B. Advancements in MXene-polymer composites for various biomedical applications[J]. Ceram. Int., 2020,46(7):8522-8535. doi: 10.1016/j.ceramint.2019.12.257

    26. [26]

      Feng W, Wang R Y, Zhou Y D Ding L, Gao X, Zhou B G, Hu P, Chen Y. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia[J]. Adv. Funct. Mater., 2019,29(22)1901942. doi: 10.1002/adfm.201901942

    27. [27]

      Szuplewska A, Kulpińska D, Dybko A, Chudy M, Jastrzębska A M, Olszyna A, Brzózka Z. Future applications of MXenes in biotechnology, nanomedicine, and sensors[J]. Trends Biotechnol., 2020,38(3):264-279. doi: 10.1016/j.tibtech.2019.09.001

    28. [28]

      Cheng L, Li X, Zhang H W, Xiang Q J. Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation[J]. J. Phys. Chem. Lett., 2019,10(12):3488-3494. doi: 10.1021/acs.jpclett.9b00736

    29. [29]

      WANG C, LIU Q H, QI C Y, WANG Z Y, ZHAO X L, YANG X W.. Synthesis and supercapacitor performances of 0D/2D MXene composite membrane[J]. Chinese J. Inorg. Chem., 2022,38(9):1707-1715.  

    30. [30]

      Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339

    31. [31]

      Shen R C, Lu X Y, Zheng Q Q, Chen Q, Ng Y H, Zhang P, Li X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts[J]. Sol. RRL, 2021,5(7)2100177. doi: 10.1002/solr.202100177

    32. [32]

      Xiao R, Zhao C X, Zou Z Y, Chen Z P, Tian L, Xu H T, Tang H, Liu Q Q, Lin Z X, Yang X F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution[J]. Appl. Catal. B-Environ., 2020,268118382. doi: 10.1016/j.apcatb.2019.118382

    33. [33]

      PENG Q M, XIAO Z H, YANG Y B, YUAN Q.. Recent progress in flexible and wearable sensors based on two-dimensional materials[J]. Journal of Analytical Science, 2021,37(2):243-251. doi: 10.13526/j.issn.1006-6144.2021.02.019

    34. [34]

      Sarhadi V K, Armengol G. Molecular biomarkers in cancer[J]. Biomolecules, 2022,12(8)1021. doi: 10.3390/biom12081021

    35. [35]

      Novak D, Utikal J. New biomarkers in cancers[J]. Cancers, 2021,13(4)708. doi: 10.3390/cancers13040708

    36. [36]

      Huang W, Xu Y, Sun Y M. Functionalized graphene fiber modified with MOF-derived rime-like hierarchical nanozyme for electrochemical biosensing of H2O2 in cancer cells[J]. Front. Chem., 2022,10873187. doi: 10.3389/fchem.2022.873187

    37. [37]

      Nair M, Sandhu S S, Sharma A K. Cancer molecular markers: A guide to cancer detection and management[J]. Semin. Cancer Biol., 2018,52:39-55.

    38. [38]

      Alex S A, Chandrasekaran N, Mukherjee A. Gold nanorod-based fluorometric ELISA for the sensitive detection of a cancer biomarker[J]. New J. Chem., 2018,42:15852-15859. doi: 10.1039/C8NJ03467B

    39. [39]

      YANG S, LU Y Q, SUN F, CHEN Y K.. Nanopores-based single molecule analysis technology and its recent progress[J]. Materials Review, 2020,34(Z2):177-181.  

    40. [40]

      Tiwari R, Lajkosz K, Berjaoui M B, Qaoud Y, Kenk M, Woffendin C, Caron P, Guillemette C, Fleshner N. Variability in testosterone measurement between radioimmunoassay (RIA), chemiluminescence assay (CLIA) and liquid chromatography-tandem mass spectrometry (MS) among prostate cancer patients on androgen deprivation therapy (ADT)[J]. Urol. Oncol.-Semin. Orig. Investig., 2022,40:193.e15-193.e20.

    41. [41]

      Luo K, Zhao C J, Luo Y, Pan C B, Li J P. Electrochemical sensor for the simultaneous detection of CA72-4 and CA19-9 tumor markers using dual recognition via glycosyl imprinting and lectin-specific binding for accurate diagnosis of gastric cancer[J]. Biosens. Bioelectron., 2022,216114672. doi: 10.1016/j.bios.2022.114672

    42. [42]

      Hong R, Sun H Y, Li D J, Yang W H, Fan K, Liu C, Dong L X, Wang G F. A review of biosensors for detecting tumor markers in breast cancer[J]. Life-Basel, 2022,12(3)342. doi: 10.3390/life12030342

    43. [43]

      Xu J Q, Zhang B, Zhang Y, Mai L Y, Hu W H, Chen C J, Liu J T, Zhu G X. Recent advances in disease diagnosis based on electrochemical-optical dual-mode detection method[J]. Talanta, 2022,253124037.

    44. [44]

      Zhang , Z L, Peng M S, Li D, Yao J, Li Y X, Wu B H, Wang L S, Xu Z L. Carbon material based electrochemical immunosensor for gastric cancer markers detection[J]. Front. Chem., 2021,9:702-708.

    45. [45]

      Sobczuk P, Lomiak M, Cudnoch-Jędrzejewska A. Dopamine D1 receptor in cancer[J]. Cancers, 2020,12(11):3232-3254. doi: 10.3390/cancers12113232

    46. [46]

      Liu J B, Liu J, Shang Y H, Xu J Q, Wang X Y, Zheng J B. An electrochemical immunosensor for simultaneous detection of two lung cancer markers based on electroactive probes[J]. J. Electroanal. Chem., 2022,919:116559-116566. doi: 10.1016/j.jelechem.2022.116559

    47. [47]

      Ma N, Zhang T, Fan D W, Kuang X, Ali A, Wu D, Wei Q. Triple amplified ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on MoS2@Cu2O-Au nanoparticles[J]. Sens. Actuator B-Chem., 2019,297:126821-126829. doi: 10.1016/j.snb.2019.126821

    48. [48]

      Moradi A, Srinivasan S, Clements J, Batra J. Beyond the biomarker role: Prostate-specific antigen (PSA) in the prostate cancer microenvironment[J]. Cancer Metastasis Rev., 2019,38:333-346. doi: 10.1007/s10555-019-09815-3

    49. [49]

      Li C, Zhang M M, Zhang Z, Tang J L, Zhang B L. Microcantilever aptasensor for detecting epithelial tumor marker Mucin 1 and diagnosing human breast carcinoma MCF-7 Cells[J]. Sens. Actuator B-Chem., 2019,297126759. doi: 10.1016/j.snb.2019.126759

    50. [50]

      Liu X, Chen Z Q, Han B, Su C L, Han Q, Chen W Z. Biosorption of copper ions from aqueous solution using rape straw powders: Optimization, equilibrium and kinetic studies[J]. Ecotox. Environ. Safe., 2018,150:251-259. doi: 10.1016/j.ecoenv.2017.12.042

    51. [51]

      Wang H Y, Sun J J, Lu L, Yang X, Xia J J, Zhang F F, Wang Z H. Competitive electrochemical aptasensor based on a CDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1[J]. Anal. Chim. Acta, 2020,1094:18-25. doi: 10.1016/j.aca.2019.10.003

    52. [52]

      LIN J H, ZHANG H H, CHU P F.. A new dual immunoassay for the determination of α-fetoprotein and carcinoembryonic antigen based on chemiluminescence signal amplification by functional graphite oxide[J]. Acta Chim. Sin., 2012,70(22):2372-2376.  

    53. [53]

      Gugoasa L A, Stefan-van Staden R-I, Al-Ogaidi A J M, Stanciu-Gavan C, van Staden J F, Rosu M-C, Pruneanu S. Molecular recognition of colon cancer biomarkers: P53, KRAS and CEA in whole blood samples[J]. J. Electrochem. Soc., 2017,164(9):B443-B447. doi: 10.1149/2.1191709jes

    54. [54]

      Kurlinkus, Ger, Kaupinis, Jasiunas, Valius, Sileikis, A. CEACAM6's role as a chemoresistance and prognostic biomarker for pancreatic cancer: A comparison of CEACAM6's diagnostic and prognostic capabilities with those of CA19-9 and CEA[J]. Life-Basel, 2021,11(6)542. doi: 10.3390/life11060542

    55. [55]

      Tang S F, Zhou F, Sun Y F, Wei L L, Zhu S B, Yang R Q, Huang Y Y, Yang J Q. CEA in breast ductal secretions as a promising biomarker for the diagnosis of breast cancer: A systematic review and meta-analysis[J]. Breast Cancer, 2016,23(6):813-819. doi: 10.1007/s12282-016-0680-9

    56. [56]

      Li N L, Jia L P, Ma R, N , Jia W L, Lu Y Y, Shi S S, Wang H S. A novel sandwiched electrochemiluminescence immunosensor for the detection of carcinoembryonic antigen based on carbon quantum dots and signal amplification[J]. Biosens. Bioelectron., 2017,89:453-460. doi: 10.1016/j.bios.2016.04.020

    57. [57]

      Kumar S, Lei Y, Alshareef N H, Quevedo-Lopez M A, Salama K N. Biofunctionalized two-dimensional Ti3C2MXenes for ultrasensitive detection of cancer biomarker[J]. Biosens. Bioelectron., 2018,121:243-249. doi: 10.1016/j.bios.2018.08.076

    58. [58]

      Wu Q, Li N B, Wang Y, Xu Y C, Wu J D, Jia G R, Ji F J, Fang X D, Chen F F, Cui X Q. Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti3C2-MXene nanosheets[J]. Anal. Chem., 2020,92(4):3354-3360. doi: 10.1021/acs.analchem.9b05372

    59. [59]

      Wu Q, Li N B, Wang Y, Liu Y, Xu Y C, Wei S, Wu J D, Jia G R, Fang X D, Chen F F, Cui X Q. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection[J]. Biosens. Bioelectron., 2019,144111697. doi: 10.1016/j.bios.2019.111697

    60. [60]

      Wei R, Wong J P C, Kwok H F. Osteopontin—A promising biomarker for cancer therapy[J]. J. Cancer, 2017,8(12):2173-2183. doi: 10.7150/jca.20480

    61. [61]

      Gimba E R P, Brum M C M, De Moraes G N. Full-length osteopontin and its splice variants as modulators of chemoresistance and radioresistance (review)[J]. Int. J. Oncol., 2019,54(2):420-430.

    62. [62]

      Zhou S J, Gu C X, Li Z Z, Yang L Y, He L H, Wang M H, Huang X Y, Zhou N, Zhang Z H. Ti3C2TX MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin[J]. Appl. Surf. Sci., 2019,498143889. doi: 10.1016/j.apsusc.2019.143889

    63. [63]

      Chen H X, Mei Q H, Jia S S, Koh K, Wang K M, Liu X J. High specific detection of osteopontin using a three-dimensional copolymer layer support based on electrochemical impedance spectroscopy[J]. Analyst, 2014,139(18):4476-4481. doi: 10.1039/C4AN00576G

    64. [64]

      Stefanius K, Servage K, Orth K. Exosomes in cancer development[J]. Curr. Opin. Genet. Dev., 2021,66:83-92. doi: 10.1016/j.gde.2020.12.018

    65. [65]

      Soung Y H, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics[J]. Cancers, 2017,9(1)8.

    66. [66]

      Zhang H X, Wang Z H, Zhang Q X, Wang F, Liu Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes[J]. Biosens. Bioelectron., 2019,124:184-190.

    67. [67]

      Fang D D, Zhao D D, Zhang S P, Huang Y T, Dai H, Lin Y Y. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing[J]. Sens. Actuator B-Chem., 2020,305127544. doi: 10.1016/j.snb.2019.127544

    68. [68]

      Borer J S, Simon L S. Cardiovascular and gastrointestinal effects of COX-2 inhibitors and NSAIDs: Achieving a balance[J]. Arthritis Res. Ther., 2005,7(4):14-22.

    69. [69]

      Yang P Y, Chan D N, Felix E, Cartwright C, Menter D G, Madden T, Klein R D, Fischer S M, Newman R A. Formation and antiproliferative effect of prostaglandin E3 from eicosapentaenoic acid in human lung cancer cells[J]. J. Lipid Res., 2004,45(6):1030-1039. doi: 10.1194/jlr.M300455-JLR200

    70. [70]

      Sadiq M, Pang L, Johnson M, Sathish V, Zhang Q, Wang D. 2D nanomaterial, Ti3C2 MXene-based sensor to guide lung cancer therapy and management[J]. Biosensors, 2021,11(2)40. doi: 10.3390/bios11020040

    71. [71]

      Cheng J M, Hu K, Liu Q R, Liu Y J, Yang H X, Kong J M. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2TX- MXene as enhancer and covalent organic frameworks as labels[J]. Anal. Bioanal. Chem., 2021,413(9):2543-2551. doi: 10.1007/s00216-021-03212-y

    72. [72]

      Kim S E, Kim Y J, Song S, Lee K N, Seong W K. A simple electrochemical immunosensor platform for detection of apolipoprotein A1 (Apo-A1) as a bladder cancer biomarker in urine[J]. Sens. Actuator B-Chem., 2019,278:103-109. doi: 10.1016/j.snb.2018.09.068

    73. [73]

      Sharifuzzaman M, Barman S C, Zahed A, Sharma S, Yoon H, Nah J S, Kim H, Park J Y. An electrodeposited MXene-Ti3C2TX nanosheets functionalized by task-specific ionic liquid for simultaneous and multiplexed detection of bladder cancer biomarkers[J]. Small, 2020,16(46)2002517. doi: 10.1002/smll.202002517

    74. [74]

      Flatmark K, Høye E, Fromm B. MicroRNAs as cancer biomarkers[J]. Scand. J. Clin. Lab. Invest., 2016,76:S80-S83. doi: 10.1080/00365513.2016.1210330

    75. [75]

      Mohammadniaei M, Koyappayil A, Sun Y, Min J H, Lee M. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification[J]. Biosens. Bioelectron., 2020,159112208. doi: 10.1016/j.bios.2020.112208

    76. [76]

      Monteleone N J, Lutz C S. MiR-708-5p Targets oncogenic prostaglandin E2 production to suppress a pro-tumorigenic phenotype in lung cancer cells[J]. Oncotarget., 2020,11(16):2464-2483.

    77. [77]

      Duan F H, Guo C P, Hu M Y, Song Y P, Wang M H, He L H, Zhang Z H, Pettinari R, Zhou L. M[J]. Construction of the 0D/2D heterojunction of Ti3C2TX MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA‑155. Sens. Actuator B-Chem., 2020,310127844.

    78. [78]

      Hu Y, Qiu Y, Yagüe E, Ji W, Liu J, Zhang J. MiRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer[J]. Cell Death Dis., 2016,7(6)e2291. doi: 10.1038/cddis.2016.194

    79. [79]

      Liu L, Wei Y M, Jiao S L, Zhu S Y, Liu X L. Biosensors and bioelectronics a novel label-free strategy for the ultrasensitive miRNA-182 detection based on MoS2/Ti3C2 nanohybrids[J]. Biosens. Bioelectron., 2019,137:45-51. doi: 10.1016/j.bios.2019.04.059

    80. [80]

      Konno M, Koseki J, Asai A, Yamagata A, Shimamura T, Motooka D, Okuzaki D, Kawamoto K, Mizushima T, Eguchi H, Takiguchi S, Satoh T, Mimori K, Ochiya T, Doki Y, Ofusa K, Mori M, Ishii H. Distinct methylation levels of mature microRNAs in gastrointestinal cancers[J]. Nat. Commun., 2019,10(1)3888. doi: 10.1038/s41467-019-11826-1

    81. [81]

      Yang X, Feng M H, Xia J F, Zhang F F, Wang Z H. An electrochemical biosensor based on AuNPs/Ti3C2 MXene three-dimensional nanocomposite for microRNA-155 detection by exonuclease Ⅲ-aided cascade target recycling[J]. J. Electroanal. Chem., 2020,878114669. doi: 10.1016/j.jelechem.2020.114669

    82. [82]

      Shan Y J, Ma J, Pan Y, Hu J L, Liu B, Jia L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1[J]. Cell Death Dis., 2018,9(7)722. doi: 10.1038/s41419-018-0759-7

    83. [83]

      Sreekumar A, Poisson L M, Rajendiran T M, Khan A P, Cao Q, Yu J, Laxman B, Mehra R, Lonigro R J, Li Y, Nyati M K, Ahsan A, Kalyana-sundaram S, Han B, Cao X, Byun J, Omenn G S, Ghosh D, Pennathur S, Alexander D C, Berger A, Shuster J R, Wei J T, Varambally S, Beecher C, Chinnaiyan A M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature, 2009,457(7231):910-914. doi: 10.1038/nature07762

    84. [84]

      Hroncekova S, Bertok T, Hires M, Jane E, Lorencova , L Vikartovska A, Tanvir A Kasak P, Tkac J. Ultrasensitive Ti3C2TX MXene/chitosan nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples[J]. Processes, 2020,8(5)580. doi: 10.3390/pr8050580

    85. [85]

      Catalona W J, Southwick P C, Slawin K M, Partin A W, Brawer M K, Flanigan R C, Patel A, Richie J P, Walsh P C, Scardino P T, Lange P H, Gasior G H, Loveland K G, Bray K R. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging[J]. Urology, 2000,56(2):255-260. doi: 10.1016/S0090-4295(00)00637-3

    86. [86]

      Medetalibeyoglu H, Kotan G, Atar N, Yola M L. A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation[J]. Talanta, 2020,220121403. doi: 10.1016/j.talanta.2020.121403

    87. [87]

      Xu Q, Xu J K, Jia H Y, Tian Q Y, Liu P, Chen S X, Cai Y, Lu X Y, Duan X M, Lu L M. Hierarchical Ti3C2 MXene-derived sodium titanate nanoribbons/PEDOT for signal amplified electrochemical immunoassay of prostate specific antigen[J]. J. Electroanal. Chem., 2020,860113869. doi: 10.1016/j.jelechem.2020.113869

    88. [88]

      Soomro R A, Jawaid S, Zhang P, Han X, Hallam K R, Karakuş S, Kilislioğlu A, Xu B, Willander M. NiWO4-induced partial oxidation of MXene for photo-electrochemical detection of prostate-specific antigen[J]. Sens. Actuator B-Chem., 2021,328129074. doi: 10.1016/j.snb.2020.129074

    89. [89]

      Meira W V, Heinrich T A, Cadena S M S C, Martinez G R. Melanogenesis inhibits respiration in B16-F10 melanoma cells whereas enhances mitochondrial cell content[J]. Exp. Cell Res., 2017,350(1):62-72. doi: 10.1016/j.yexcr.2016.11.006

    90. [90]

      Liu Y, Huang S J, Li J N, Wang M H, Wang C B, Hu B, Zhou N, Zhang Z H. 0D/2D heteronanostructure—Integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16-F10 Cells[J]. Microchim. Acta, 2021,188(3)69. doi: 10.1007/s00604-021-04726-z

    91. [91]

      Wang S, Song W L, Wei S H, Zeng S, Yang S H, Lei C Y, Huang Y, Nie Z, Yao S Z. Functional titanium carbide MXenes-loaded entropy-driven RNA explorer for long noncoding RNA PCA3 imaging in live cells[J]. Anal. Chem., 2019,91(13):8622-8629. doi: 10.1021/acs.analchem.9b02040

    92. [92]

      Hanahan D, Weinberg R A. Hallmarks of cancer: The next generation[J]. Cell, 2011,144(5):646-674. doi: 10.1016/j.cell.2011.02.013

    93. [93]

      DING H J, LI L L, WANG C, WANG G Z, ZHANG D.. Advances in the study of the relationship between reactive oxygen species and disease[J]. Chinese Journal of Clinical and Experimental Pathology, 2023,39(2):212-215. doi: 10.13315/j.cnki.cjcep.2023.02.016

    94. [94]

      TANG Z, WANG H Y, GUO D M.. Advances in the study of antioxidants and free radicals in the regulation of tumors[J]. Sichuan Medical Journal, 2022,43(9):932-935. doi: 10.16252/j.cnki.issn1004-0501-2022.09.016

    95. [95]

      LI X, SHI J Y, QIU S, WANG M F, LIU C L.. SOD1 inhibition regulates the ROS signaling transduction[J]. Prog. Chem., 2018,30(10):1475-1486.  

    96. [96]

      Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat[J]. Rev. Drug Discov., 2009,8(7):579-591. doi: 10.1038/nrd2803

    97. [97]

      Zheng J S, Wang B, Jin Y Z, Weng B, Chen J C. Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells[J]. Microchim. Acta, 2019,186(2)95. doi: 10.1007/s00604-018-3220-9

    98. [98]

      Zhao S F, Hu F X, Shi Z Z, Fu J J, Chen Y, Dai F Y, Guo C X, Li C M. 2‑D/2‑D heterostructured biomimetic enzyme by interfacial assembling Mn3(PO4)2 and MXene as a flexible platform for realtime sensitive sensing cell superoxide[J]. Nano Res., 2021,14(3):879-886. doi: 10.1007/s12274-020-3130-0

    99. [99]

      Lin T, Xu Y, Zhao A S, He W S, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review[J]. Anal. Chim. Acta, 2022,1207339461. doi: 10.1016/j.aca.2022.339461

    100. [100]

      HAO X J, ZHAO S F, ZHANG C M, HU F X, YANG H B, GUO C X. Electrochemical biosensors fabricated using nanomaterials-based biomimetic enzymes for detection of reactive oxygen species: A review[J]. Materials Review, 2021,35(3):3183-3193.  

    101. [101]

      Zhang Y, Xiao J, Lv Q, Wang L, Dong X L, Asif M, Ren J H, He W S, Sun Y M, Xiao F, Wang S. In situ electrochemical sensing and real-time monitoring live cells based on freestanding nanohybrid paper electrode assembled from 3D functionalized graphene framework[J]. ACS Appl. Mater. Interfaces, 2017,9(44):38201-38210. doi: 10.1021/acsami.7b08781

    102. [102]

      Zhang Y, Xiao J, Sun Y M, Wang L, Dong X L, Ren J H, He W S, Xiao F. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells[J]. Biosens. Bioelectron., 2018,100:453-461. doi: 10.1016/j.bios.2017.09.038

    103. [103]

      Wang L, Dong Y, Zhang Y, Zhang Z Y, Chi K, Yuan H, Zhao A S, Ren J H, Xiao F, Wang S. PtAu alloy nanoflowers on 3D porous ionic liquid functionalized graphene-wrapped activated carbon fiber as a flexible microelectrode for near-cell detection of cancer[J]. NPG Asia Mater., 2016,8(12)e337. doi: 10.1038/am.2016.189

    104. [104]

      Xu Q, Yuan H, Dong X L, Zhang Y, Asif M, Dong Z H, He W S, Ren J H, Sun Y M, Xiao F. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples[J]. Biosens. Bioelectron., 2018,107:153-162. doi: 10.1016/j.bios.2018.02.026

    105. [105]

      Yuan H, Zhao J Q, Wang Q J, Manoj D, Zhao A S, Chi K, Ren J H, He W S, Zhang Y, Sun Y M, Xiao F, Wang S. Hierarchical core-shell structure of 2D VS2@VC@N-Doped carbon sheets decorated by ultrafine Pd nanoparticles: Assembled in a 3D rosette-like array on carbon fiber microelectrode for electrochemical sensing[J]. ACS Appl. Mater. Interfaces, 2020,12(13):15507-15516. doi: 10.1021/acsami.9b21436

    106. [106]

      Sun Y M, Zeng W, Sun H L H, Chen D G, Chan V, Liao K. Inorganic/polymer-graphene hybrid gel as versatile electrochemical platform for electrochemical capacitor and biosensor[J]. Carbon, 2018,132:589-597. doi: 10.1016/j.carbon.2018.02.099

    107. [107]

      Huang W, Xu Y, Sun Y M. Functionalized graphene fiber modified with MOF-derived rime-like hierarchical nanozyme for electrochemical biosensing of H2O2 in cancer cells[J]. Front. Chem., 2022,10873187. doi: 10.3389/fchem.2022.873187

    108. [108]

      Sun Y M, He K, Zhang , Z F, Zhou A J, Duan H W. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode[J]. Biosens. Bioelectron., 2015,68:358-364. doi: 10.1016/j.bios.2015.01.017

    109. [109]

      Zhao A S, She J, Manoj D, Wang T Q, Sun Y M, Zhang Y, Xiao F. Functionalized graphene fiber modified by dual nanoenzyme: towards high-performance flexible nanohybrid microelectrode for electrochemical sensing in live cancer cells[J]. Sens. Actuator B-Chem., 2020,310127861. doi: 10.1016/j.snb.2020.127861

    110. [110]

      Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y M, Xiao F, Liu H F. Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: A textile sensor for H2O2 detection in clinical cancer tissues[J]. Chem. Eng. J., 2022,427131398. doi: 10.1016/j.cej.2021.131398

    111. [111]

      Wang T Q, Wu Y, She J, Xu Y, Zhang Y, Zhao A S, Manoj D, Xi J B, Sun Y M, Ren J H, Xiao F. 3D nitrogen-doped carbon nanofoam arrays embedded with PdCu alloy nanoparticles: assembling on flexible microelectrode for electrochemical detection in cancer cells[J]. Anal. Chim. Acta, 2021,1158338420. doi: 10.1016/j.aca.2021.338420

    112. [112]

      Zhang Y, Chi K, Xiao J, Xu Y, Zhao A S, Xu Y, Sun Y M, Xiao F, Wang S. Coral-like hierarchical structured carbon nanoscaffold with improved sensitivity for biomolecular detection in cancer tissue[J]. Biosens. Bioelectron., 2020,150111924. doi: 10.1016/j.bios.2019.111924

    113. [113]

      Tong P F, Asif M, Ajmal M, Aziz A, Sun Y M. A multicomponent polymer-metal-enzyme system as electrochemical biosensor for H2O2 detection[J]. Front. Chem., 2022,10411.

    114. [114]

      Zhao A S, She J, Xiao C, Xi J B, Xu Y, Manoj D, Sun Y M, Xiao F. Green and controllable synthesis of multi-heteroatoms co-doped graphene fiber as flexible and biocompatible microelectrode for in situ electrochemical detection of biological samples[J]. Sens. Actuator B-Chem., 2021,335129683. doi: 10.1016/j.snb.2021.129683

    115. [115]

      Asif M, Xiao F, Govindasamy M, Sun Y M. 2D nanoarchitectures for sensing/biosensing applications[J]. Front. Chem., 2022,10992793. doi: 10.3389/fchem.2022.992793

    116. [116]

      Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y M, Liu H F. Turning the page: Advancing detection platforms for sulfate reducing bacteria and their perks[J]. Chem. Rec., 2022,22e202100166.

    117. [117]

      Zhao A S, Zhang Z W, Zhang P H, Xiao S, Wang L, Dong Y, Yuan H, Li P W, Sun Y M, Jiang X L, Xiao F. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing[J]. Anal. Chim. Acta, 2016,938:63-71. doi: 10.1016/j.aca.2016.08.013

    118. [118]

      WANG Y Y, CHEN L M, LI S Y, LAI L H.. How intrinsically disordered proteins modulate biomolecular condensates[J]. Prog. Chem., 2022,34(7):1610-1618.  

    119. [119]

      Sun Y M, Zheng H M, Wang C X, Yang M M, Zhou A J, Duan H W. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: Towards a flexible and versatile nanohybrid electrode[J]. Nanoscale., 2016,8(3):1523-1534. doi: 10.1039/C5NR06912B

    120. [120]

      Asif M, Ashraf G, Aziz A, Iftikhar T, Wang Z P, Xiao F, Sun Y M. Tuning the redox chemistry of copper oxide nanoarchitectures integrated with rGOP via facet engineering: Sensing H2S toward SRB detection[J]. ACS Appl. Mater. Interfaces, 2022,14(17):19480-19490. doi: 10.1021/acsami.2c02119

    121. [121]

      Ma X, Wu Y, She J, Zhao A S, Yang S X, Yang X, Xiao F, Sun Y M. On-chip electrochemical sensing of neurotransmitter in nerve cells by functionalized graphene fiber microelectrode[J]. Sens. Actuator B-Chem., 2022,365131874. doi: 10.1016/j.snb.2022.131874

    122. [122]

      Zhao A S, Lin T, Xu Y, Zhang W G, Asif M, Sun Y M, Xiao F. Integrated electrochemical microfluidic sensor with hierarchically porous nanoarrays modified graphene fiber microelectrode for bioassay[J]. Biosens. Bioelectron., 2022,205114095. doi: 10.1016/j.bios.2022.114095

    123. [123]

      Xu Y, Huang W, Zhang Y, Duan H W, Xiao F. Electrochemical microfluidic multiplexed bioanalysis by a highly active bottlebrush-like nanocarbon microelectrode[J]. Anal. Chem., 2022,94(10):4463-4473. doi: 10.1021/acs.analchem.1c05544

    124. [124]

      Manoj D, Aziz A, Muhammad N, Wang Z P, Xiao F, Asif M, Sun Y M. Integrating Co3O4 nanocubes on MXene anchored CFE for improved electrocatalytic activity: Freestanding flexible electrode for glucose sensing[J]. J. Environ. Chem. Eng., 2022,10(5)108433. doi: 10.1016/j.jece.2022.108433

    125. [125]

      FENG H D, ZHAO L, BAI Y F, FENG F.. The application of nanoscale metal-organic frameworks for tumor targeted therapy[J]. Prog. Chem., 2022,34(8):1863-1878.  

    126. [126]

      Melamed J R, Edelstein R S, Day E S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy[J]. ACS Nano, 2015,9(1):6-11. doi: 10.1021/acsnano.5b00021

    127. [127]

      Lu Y, Zhang X G, Hou X Q, Feng M, Cao Z, Liu J. Functionalized 2D Nb2C nanosheets for primary and recurrent cancer photothermal/immune-therapy in the NIR-Ⅱ biowindow[J]. Nanoscale, 2021,13(42):17822-17836. doi: 10.1039/D1NR05126A

    128. [128]

      Hwang S, Nam J, Jung S, Song J, Doh H, Kim S. Gold nanoparticle-mediated photothermal therapy: Current status and future perspective[J]. Nanomedicine, 2014,9(13):2003-2022. doi: 10.2217/nnm.14.147

    129. [129]

      Hu J J, Cheng Y J, Zhang X Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors[J]. Nanoscale, 2018,10(48):22657-22672. doi: 10.1039/C8NR07627H

    130. [130]

      Xuan J N, Wang Z Q, Chen Y Y, Liang D J, Cheng L, Yang X J, Liu Z, Ma R, Sasaki T, Geng F X. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angew. Chem. Int. Ed., 2016,128(47):14789-14794. doi: 10.1002/ange.201606643

    131. [131]

      Liu G Y, Zou J H, Tang Q Y, Yang X Y, Zhang Y W, Zhang Q, Huang W, Chen P, Shao J J, Dong X C. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(46):40077-40086. doi: 10.1021/acsami.7b13421

    132. [132]

      Xing C Y, Chen S Y, Liang X, Liu Q, Qu M M, Zou Q S, Li J H, Tan H, Liu L P, Fan D Y, Zhang H. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy Anticancer Activity[J]. ACS Appl. Mater. Interfaces, 2018,10(33):27631-27643. doi: 10.1021/acsami.8b08314

    133. [133]

      Zeng J, Goldfeld D, Xia Y. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch[J]. Angew. Chem., 2013,125(15):4263-4267. doi: 10.1002/ange.201210359

    134. [134]

      Hessel C. M, P Pattani V, Rasch M, Panthani M G, Koo B, Tunnell J W, Korgel B A[J]. Copper selenide nanocrystals for photothermal therapy. Nano Lett., 2011,11(6):2560-2566.

    135. [135]

      Han X X, Jing X X, Yang D Y, Lin H, Wang Z G, Ran H, Li P, Chen Y. Therapeuticmesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-Ⅱ biowindow[J]. Theranostics, 2018,8(16):4491-4508. doi: 10.7150/thno.26291

    136. [136]

      Cao Y, Wu T T, Zhang K, Meng X D, Dai W H, Wang D D, Dong H F, Zhang X J. Engineeredexosome-mediated near-infrared-Ⅱ Region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy[J]. ACS Nano, 2019,13(2):1499-1510.

    137. [137]

      Kong W H, Niu Y S, Liu M L, Zhang K X, Xu G F, Wang Y, Wang X W, Xu Y H, Li J H. One-step hydrothermal synthesis of fluorescent MXene-like titanium carbonitride quantum dots[J]. Inorg. Chem. Commun., 2019,105:151-157. doi: 10.1016/j.inoche.2019.04.033

    138. [138]

      Abubakar Sadique M, Yadav S, Ranjan P, Akram Khan M, Kumar A, Khan R. Rapid detection of SARS-CoV-2 using graphene-based IoT integrated advanced electrochemical biosensor[J]. Mater. Lett., 2021,305130824. doi: 10.1016/j.matlet.2021.130824

    139. [139]

      Ranjan P, Singhal A, Abubakar Sadique M, Yadav S, Parihar A, Khan R. Scope of biosensors, commercial aspects, and miniaturized devices for point-of-care testing from lab to clinics applications//Khan R, Parihar A, Sanghi S K. Biosensor Based Advanced Cancer Diagnostics: From lab to clinics[J]. Elsevier, 2022:395-410.

    140. [140]

      Parihar A, Singhal A, Kumar N, Khan R, Khan M A, Srivastava A K. Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics[J]. Nano-Micro Lett., 2022,14(1)100. doi: 10.1007/s40820-022-00845-1

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    6. [6]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    7. [7]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(10)
  • Abstract views(1213)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return