Citation: Zi-Ming SHENG, You-Rong TAO, Lu-Lu XU, Peng YANG, Wen-Xin WANG, Xing-Cai WU. CoFe-P catalyst prepared by a facile electrodeposition for high-efficient oxygen evolution reaction[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1325-1337. doi: 10.11862/CJIC.2023.102 shu

CoFe-P catalyst prepared by a facile electrodeposition for high-efficient oxygen evolution reaction

  • Corresponding author: Xing-Cai WU, wuxingca@nju.edu.cn
  • Received Date: 24 April 2023
    Revised Date: 18 May 2023

Figures(6)

  • The development of low-cost, high-efficiency, and robust electrocatalysts with non-precious metal is the key to realizing large-scale hydrogen production by water electrolysis. Herein, a highly amorphous Co1Fe1-P film composed of ultrathin two-dimensional nanosheets was successfully loaded onto the nickel foam via a facile and reasonable electrodeposition method. Owing to the unique morphology, low-energy barrier provided by highly amorphous structure, optimized electronic structure, and strong synergistic effects of cobalt phosphides and iron phosphides, the as-fabricated Co1Fe1-P/NF electrode exhibited outstanding electrocatalytic performance for oxygen evolution reaction (OER) with the low overpotentials of 274.4 and 329.5 mV at 10 and 100 mA·cm-2 in 1.0 mol·L-1 KOH, respectively. The corresponding Tafel slope was 45.3 mV·dec-1, comparing favorably to that of commercial RuO2 catalyst. Notably, the 100-hour chronopotentiometry at 10 mA·cm-2 and 1 000-cycle voltammetry tests for OER with negligible attenuation confirmed the excellent stability and durability of Co1Fe1-P/NF.
  • 加载中
    1. [1]

      Shanmugam S, Sivanantham A, Matsunaga M, Simon U, Osaka T. Metal phosphide nanoparticles embedded in carbon as efficient electrocatalyst for oxygen evolution reaction[J]. Electrochim. Acta, 2019,297:749-754. doi: 10.1016/j.electacta.2018.12.028

    2. [2]

      Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T, Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured ni-mon catalyst with fast water-dissociation kinetics[J]. Adv. Mater., 2022,342201774. doi: 10.1002/adma.202201774

    3. [3]

      Chu Y, Wang D, Shan X L, Liu C H, Wang W C, Mitsuzaki N, Chen Z D. Activity engineering to transition metal phosphides as bifunctional electrocatalysts for efficient water-splitting[J]. Int. J. Hydrog. Energy, 2022,47:38983-39000. doi: 10.1016/j.ijhydene.2022.09.070

    4. [4]

      Wang M, Zhang L, He Y J, Zhu H W. Recent advances in transitionmetal-sulfide-based bifunctional electrocatalysts for overall water splitting[J]. J. Mater. Chem. A, 2021,9:5320-5363. doi: 10.1039/D0TA12152E

    5. [5]

      Han Q L, Luo Y H, Li J D, Du X H, Sun S J, Wang Y J, Liu G H, Chen Z W. Efficient NiFe-based oxygen evolution electrocatalysts and origin of their distinct activity[J]. Appl. Catal. B-Environ., 2022,304120937. doi: 10.1016/j.apcatb.2021.120937

    6. [6]

      Luo J B, Zhou Y, Tuo Y X, Gu Y F, Wang X Z, Guo Q Y, Chen C, Wang D, Wang S T, Zhang J. Interfacial polarization in ultra-small Co3S4-MoS2 heterostructure for efficient electrocatalytic hydrogen evolution reaction[J]. Appl. Mater. Today, 2022,26101311. doi: 10.1016/j.apmt.2021.101311

    7. [7]

      Zhu J L, Qian J M, Peng X B, Xia B R, Gao D Q. Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction[J]. Nano-Micro Lett., 2023,1530. doi: 10.1007/s40820-022-01011-3

    8. [8]

      Yan Y T, Lin J H, Xu T X, Liu B S, Huang K K, Qiao L, Liu S D, Cao J, Jun S C, Yamauchi Y, Qi J L. Atomic-level platinum filling into Nivacancies of dual-deficient NiO for boosting electrocatalytic hydrogen evolution[J]. Adv. Energy Mater., 2022,122200434. doi: 10.1002/aenm.202200434

    9. [9]

      Li X P, Zheng L R, Liu S J, Ouyang T, Ye S Y, Liu Z Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting[J]. Chin. Chem. Lett., 2022,33:4761-4765. doi: 10.1016/j.cclet.2021.12.095

    10. [10]

      Salem K E, Saleh A A, Khedr G E, Shaheen B S, Allam N K. Unveiling the optimal interfacial synergy of plasma-modulated trimetallic Mn-Ni-Co phosphides: Tailoring deposition ratio for complementary water splitting[J]. Energy Environ. Mater., 2023,6e12324.

    11. [11]

      Wang P Y, Pu Z H, Li W Q, Zhu J W, Zhang C T, Zhao Y F, Mu S C. Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting[J]. J. Catal., 2019,377:600-608. doi: 10.1016/j.jcat.2019.08.005

    12. [12]

      Bodhankar P M, Sarawade P B, Kumar P, Vinu A, Kulkarni A P, Lokhande C D, Dhawale D S. Nanostructured metal phosphide based catalysts for electrochemical water splitting: A review[J]. Small, 2022,182107572. doi: 10.1002/smll.202107572

    13. [13]

      Li Y, Li R P, Wang D, Xu H, Meng F, Dong D R, Jiang J, Zhang J Q, An M Z, Yang P X. A review: Target-oriented transition metal phosphide design and synthesis for water splitting[J]. Int. J. Hydrog. Energy, 2021,46:5131-5149. doi: 10.1016/j.ijhydene.2020.11.030

    14. [14]

      Jebaslinhepzybai B T, Partheeban T, Gavali D S, Thapa R, Sasidharan M. One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts[J]. Int. J. Hydrog. Energy, 2021,46:21924-21938. doi: 10.1016/j.ijhydene.2021.04.022

    15. [15]

      Schipper D E, Zhao Z H, Thirumalai H, Leitner A P, Donaldson S L, Kumar A, Qin F, Wang Z M, Grabow L C, Bao J M, Whitmire K H. Effects of catalyst phase on the hydrogen evolution reaction of water splitting: Preparation of phase-pure films of FeP, Fe2P, and Fe3P and their relative catalytic activities[J]. Chem. Mater., 2018,30:3588-3598. doi: 10.1021/acs.chemmater.8b01624

    16. [16]

      Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2013,135:9267-9270. doi: 10.1021/ja403440e

    17. [17]

      Ma H, Yan W S, Yu Y L, Deng L H, Hong Z, Song L, Li L. Phosphorus vacancies improve the hydrogen evolution of MoP electrocata-lysts[J]. Nanoscale, 2023,15:1357-1364. doi: 10.1039/D2NR05964A

    18. [18]

      Bai N N, Li Q, Mao D Y, Li D K, Dong H Z. One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution[J]. ACS Appl. Mater. Interfaces, 2016,8:29400-29407. doi: 10.1021/acsami.6b07785

    19. [19]

      Duan D H, Guo D S, Gao J, Liu S B, Wang Y F. Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting[J]. J. Colloid Interface Sci., 2022,622:250-260. doi: 10.1016/j.jcis.2022.04.127

    20. [20]

      Jiang N, You B, Sheng M L, Sun Y J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting[J]. Angew. Chem. Int. Ed., 2015,54:6251-6254. doi: 10.1002/anie.201501616

    21. [21]

      Liu X X, He Q, Xiao S H, Li X R, Chang L, Xiang Y, Hu K, Niu X B, Wu R, Chen J S. Realizing efficient overall water splitting by tuning the cobalt content in self-supported Nix-Coy-P Microarrays[J]. ChemElectroChem, 2021,8:1307-1315. doi: 10.1002/celc.202001585

    22. [22]

      Tang F, Guo S J, Sun Y G, Lin X J, Qiu J H, Cao A M. Facile Synthesis of Fe-doped CoO nanotubes as high-efficient electrocatalysts for oxygen evolution reaction[J]. Small Struct., 2022,32100211. doi: 10.1002/sstr.202100211

    23. [23]

      Zhang D D, Huang R X, Xie H M, Li R Z, Liu X Y, Pan M, Lei Y. Effect of the valence state of initial iron source on oxygen evolution activity of Fe-doped Ni-MOF[J]. Chem. Pap., 2020,74:2775-2784. doi: 10.1007/s11696-020-01112-6

    24. [24]

      Tabassum L, Islam M K, Perea I P, Li M L, Huang X N, Tansim H, Suib S L. Facile synthesis of transition-metal-doped (Fe, Co, and Ni) CuS/CuO/CS nanorod arrays for superior electrocatalytic oxygen evolution reaction[J]. ACS Appl. Energy Mater., 2022,5:12039-12048. doi: 10.1021/acsaem.2c01384

    25. [25]

      Li C M, Zhu D Q, Cheng S S, Zuo Y, Wang Y, Ma C C, Dong H J. Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution[J]. Chin. Chem. Lett., 2022,33:1141-1153. doi: 10.1016/j.cclet.2021.07.057

    26. [26]

      Wu Y H, Lian J Q, Wang Y X, Sun J J, He Z, Gu Z J. Potentiostatic electrodeposition of self-supported Ni-S electrocatalyst supported on Ni foam for efficient hydrogen evolution[J]. Mater. Des., 2021,198109316. doi: 10.1016/j.matdes.2020.109316

    27. [27]

      Zhang Y F, Lin L, Liu J T, Peng J Y, Chen Z, Chen L J. A hierarchical and branch-like NiCoS/NF material prepared by gradient electrodeposition method for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46:36629-36639. doi: 10.1016/j.ijhydene.2021.08.187

    28. [28]

      Du Z J, Xiong D H, Verma S K, Liu B S, Zhao X J, Liu L F, Li H. A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions[J]. Inorg. Chem. Front., 2018,5:183-188. doi: 10.1039/C7QI00621G

    29. [29]

      Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. J. Am. Chem. Soc., 2013,135:10274-10277. doi: 10.1021/ja404523s

    30. [30]

      Mai W S, Cui Q, Zhang Z Q, Zhang K K, Li G Q, Tian L H, Hu W. CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on ni foam for efficient overall water splitting[J]. ACS Appl. Energy Mater., 2020,3:8075-8085.

    31. [31]

      Kim H, Oh S, Cho E, Kwon H. 3D porous cobalt-iron-phosphorus bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions[J]. ACS Sustain. Chem. Eng., 2018,6:6305-6311. doi: 10.1021/acssuschemeng.8b00118

    32. [32]

      Miao C C, Zheng X W, Sun J M, Wang H, Qiao J, Han N, Wang S P, Gao W, Liu X H, Yang Z X. Facile electrodeposition of amorphous nickel/nickel sulfide composite films for high-efficiency hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2021,4:927-933. doi: 10.1021/acsaem.0c02863

    33. [33]

      Liu W, Liu H, Dang L N, Zhang H X, Wu X L, Yang B, Li Z J, Zhang X W, Lei L C, Jin S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photoelectrochemical oxygen evolution[J]. Adv. Funct. Mater., 2017,271603904. doi: 10.1002/adfm.201603904

    34. [34]

      Chen B L, Li R, Ma G P, Gou X L, Zhu Y Q, Xia Y D. Cobalt sulfide/N, S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Nanoscale, 2015,7:20674-20684. doi: 10.1039/C5NR07429K

    35. [35]

      Xu H, Wei J J, Liu C F, Zhang Y P, Tian L, Wang C Q, Du Y K. Phosphorus-doped cobalt-iron oxyhydroxide with untrafine nanosheet structure enable efficient oxygen evolution electrocatalysis[J]. J. Colloid Interface Sci., 2018,530:146-153. doi: 10.1016/j.jcis.2018.06.073

    36. [36]

      Pei Y, Ge Y C, Chu H, Smith W, Dong P, Ajayan P M, Ye M X, Shen J F. Controlled synthesis of 3D porous structured cobalt-iron based nanosheets by electrodeposition as asymmetric electrodes for ultra-efficient water splitting[J]. Appl. Catal. B-Environ., 2019,244:583-593. doi: 10.1016/j.apcatb.2018.11.091

    37. [37]

      Dutta A, Mutyala S, Samantara A K, Bera S, Jena B K, Pradhan N. Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity[J]. ACS Energy Lett., 2018,3:141-148. doi: 10.1021/acsenergylett.7b01141

    38. [38]

      Li F, Bu Y F, Lv Z J, Mahmood J, Han G F, Ahmad I, Kim G, Zhong Q, Baek J B. Porous cobalt phosphide polyhedrons with iron doping as an efficient bifunctional electrocatalyst[J]. Small, 2017,131701167. doi: 10.1002/smll.201701167

    39. [39]

      Zhang Y, Xu J, Ding Y G, Wang C D. Tuning the d-band center enables nickel-iron phosphide nanoprisms as efficient electrocatalyst towards oxygen evolution[J]. Int. J. Hydrog. Energy, 2020,45:17388-17397. doi: 10.1016/j.ijhydene.2020.04.213

    40. [40]

      Babu D D, Huang Y Y, Anandhababu G, Ghausi M A, Wang Y B. Mixed-metal-organic framework self-template synthesis of porous hybrid oxyphosphides for efficient oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017,9:38621-38628. doi: 10.1021/acsami.7b13359

    41. [41]

      Yuan H T, Wang Y Z, Yang C X, Liang Z Z, Chen M X, Zhang W, Zheng H Q, Cao R. Ultra-thin Co-Fe layered double hydroxide hollow nanocubes for efficient electrocatalytic water oxidation[J]. ChemPhysChem, 2019,20:2964-2967. doi: 10.1002/cphc.201900524

    42. [42]

      Zhang Y, Gao X B, Lv L, Xu J, Lin H F, Ding Y G, Wang C D. Tailoring π-symmetry electrons in cobalt-iron phosphide for highly efficient oxygen evolution[J]. Electrochim. Acta, 2020,341136029. doi: 10.1016/j.electacta.2020.136029

    43. [43]

      Sun H C, Li J G, Lv L, Li Z S, Ao X, Xu C H, Xue X Y, Hong G, Wang C D. Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting[J]. J. Power Sources, 2019,425:138-146. doi: 10.1016/j.jpowsour.2019.04.014

    44. [44]

      Zhang J Y, Lv L, Tian Y, Li Z, Ao X, Lan Y, Jiang J, Wang C. Rational design of cobalt-iron selenides for highly efficient electrochemical water oxidation[J]. ACS Appl. Mater. Interfaces, 2017,9:33833-33840. doi: 10.1021/acsami.7b08917

    45. [45]

      Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angew. Chem. Int. Ed., 2017,56:5867-5871. doi: 10.1002/anie.201701477

  • 加载中
    1. [1]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    8. [8]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    9. [9]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    10. [10]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    11. [11]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    12. [12]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    13. [13]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    16. [16]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    17. [17]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    18. [18]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    19. [19]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    20. [20]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

Metrics
  • PDF Downloads(15)
  • Abstract views(684)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return