Citation: Miao CAI, Zhu-Yun WANG, Xiao-Li CHEN, Lu LIU, Rui-Kui YAN, Hua-Li CUI, Hua YANG, Ji-Jiang WANG. Synthesis, structure, and fluorescence sensing properties of zinc coordination polymer based on 4-(2, 4-dicarboxylic phenoxyl) phthalic acid ligand[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1379-1388. doi: 10.11862/CJIC.2023.101 shu

Synthesis, structure, and fluorescence sensing properties of zinc coordination polymer based on 4-(2, 4-dicarboxylic phenoxyl) phthalic acid ligand

  • Corresponding author: Xiao-Li CHEN, chenxiaoli003@163.com
  • Received Date: 29 November 2022
    Revised Date: 28 March 2023

Figures(6)

  • A zinc coordination polymer (Zn-CP) based on H4dpa and bpy ligands (H4dpa=4-(2, 4-dicarboxylic phenoxyl) phthalic acid, bpy=4, 4′-dipyridine), namely [Zn(H2dpa)(bpy)1.5]n (1), has been hydrothermal synthesized and structurally characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. 1 shows 1D double chain based on Zn2+ ion, H2dpa2- and bpy ligand. The adjacent 1D double chains further expand into a 3D supramolecular network through hydrogen bonding. Fluorescence studies show that 1 is a fluorescence sensor with high sensitivity, good selectivity, and multiple responses, which can be used for the detection of pesticides and nitro explosives. Interestingly, 2, 4, 6-trinitrobenzene (TNP), and pyrimethanil (Pth) had an obvious quenching effect on the fluorescence emission of 1, while imazalil (Ima) had an enhancement effect on the fluorescence of 1. In addition, the fluorescence mechanism was investigated by means of UV-Vis absorption spectrum, fluorescence lifetime, and X-ray photoelectron spectroscopy.
  • 加载中
    1. [1]

      Wu K, Hu J S, Shi S N, Li J X, Cheng X F. A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution[J]. Dyes Pigment., 2020,173107993. doi: 10.1016/j.dyepig.2019.107993

    2. [2]

      Lu L, Wang J, Wu W P, Ma A Q, Liu J Q, Yaday R, Kumar A. Fluorescent sensing of nitroaromatics by two coordination polymers having potential active sites[J]. J. Lumin., 2017,186:40-47. doi: 10.1016/j.jlumin.2017.02.010

    3. [3]

      Wu K, Hu J S, Cheng X F, Li J X, Zhou C H. A superior luminescent metal-organic framework sensor for sensing trace Al3+ and picric acid via disparate charge transfer behaviors[J]. J. Lumin., 2020,219116908. doi: 10.1016/j.jlumin.2019.116908

    4. [4]

      Wu M Q, Zhang H X, Ge C Y, Wu J, Ma S C, Yuan Y, Zhao L Y, Yao T J, Zhang X, Yang Q F. A stable lanthanum-based metal-organic frameworks as fluorescent sensor for detecting TNP and Fe3+ with hyper-sensitivity and ultra-selectivity[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,264120276. doi: 10.1016/j.saa.2021.120276

    5. [5]

      Qiu S L, Xue M, Zhu G S. Metal-organic framework membranes: From synthesis to separation application[J]. Chem. Soc. Rev., 2014,43:6116-6140. doi: 10.1039/C4CS00159A

    6. [6]

      Han S D, Liu S J, Wang Q L, Miao X H, Hu T L. Synthesis and magnetic properties of a series of octanuclear[Fe6Ln2]nanoclusters[J]. Cryst. Growth Des., 2015,15:2253-2259. doi: 10.1021/acs.cgd.5b00024

    7. [7]

      Ye Y, Du J F, Sun L B, Liu Y C, Wang S, Song X W, Liang Z Q. Two zinc metal-organic framework isomers based on pyrazine tetracarboxylic acid and dipyridinylbenzene for adsorption and separation of CO2 and light hydrocarbons[J]. Dalton Trans., 2020,49:1135-1142. doi: 10.1039/C9DT04305E

    8. [8]

      Liu L, Wang S M, Han Z B, Ding M, Yuan D Q, Jiang H L. Exceptionally robust in-based metal-organic framework for highly efficient carbon dioxide capture and conversion[J]. Inorg. Chem., 2016,55:3558-3565. doi: 10.1021/acs.inorgchem.6b00050

    9. [9]

      Chai D F, Gómez-García C J, Li B, Pang H J, Ma H Y, Wang H M, Tan L C. Polyoxometalate-based metal-organic frameworks for boosting electrochemical capacitor performance[J]. Chem. Eng. J., 2019,373:587-597. doi: 10.1016/j.cej.2019.05.084

    10. [10]

      Wang G D, Li Y Z, Shi W J, Zhang B, Hou L, Wang Y Y. A robust cluster-based Eu-MOF as multi-functional fluorescence sensor for detection of antibiotics and pesticides in water[J]. Sens. Actuator B-Chem., 2021,331129377. doi: 10.1016/j.snb.2020.129377

    11. [11]

      Liu L, Chen X L, Shang L, Cai M, Cui H L, Yang H, Wang J J. Eu3+-postdoped MOFs are used for fluorescence sensing of TNP, TC and pesticides and for anti-counterfeiting ink application[J]. Dyes Pigment., 2022,202110253. doi: 10.1016/j.dyepig.2022.110253

    12. [12]

      Hunter J R E, Riederer A M, Ryan P B. Method for the determination of organophosphorus and pyrethroid pesticides in food via gas chromatography with electron-capture detection[J]. J. Agric. Food Chem., 2010,58:1396-1402. doi: 10.1021/jf9028859

    13. [13]

      Chen Q, Fung Y. Capillary electrophoresis with immobilized quantum dot fluorescence detection for rapid determination of organophosphorus pesticides in vegetables[J]. Electrophoresis, 2010,31:3107-3114. doi: 10.1002/elps.201000260

    14. [14]

      Gai Y L, Guo Q, Zhao X Y, Chen Y, Liu S, Zhang Y, Zhuo C X, Yao C, Xiong K C. Extremely stable europium organic framework for luminescent sensing of Cr2O72- and Fe3+ in aqueous systems[J]. Dalton Trans., 2018,47:12051-12055. doi: 10.1039/C8DT02313A

    15. [15]

      Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43:5815-5840. doi: 10.1039/C4CS00010B

    16. [16]

      Ren L L, Cui Y Y, Cheng A L, Gao E Q. Water-stable lanthanide-based metal-organic frameworks for rapid and sensitive detection of nitrobenzene derivatives[J]. J. Solid State Chem., 2019,270:463-469. doi: 10.1016/j.jssc.2018.11.041

    17. [17]

      Sun T C, Fan R Q, Xiao R, Xing T F, Qin M Y, Liu Y Q, Hao S, Chen W, Yang Y L. Anionic Ln-MOF with tunable emission for heavy metal ion capture and L-cysteine sensing in serum[J]. J. Mater. Chem. A, 2020,8:5587-5594. doi: 10.1039/C9TA13932J

    18. [18]

      Sheldrick G M. SHELXL-2018, Program for X-ray crystal structure solution, University of Göttingen, Germany, 2018.

    19. [19]

      HUANG J X, ZHAO H, LIU S Q, ZHANG J J. Two-dimensional luminescent coordination polymer based on dinuclear {Zn2(COO)4} second buildings units: Crystal structure and detection of Fe3+[J]. Chinese J. Inorg. Chem., 2021,37(8):1513-1518.  

    20. [20]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A Highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.  

    21. [21]

      Valeur B. Molecular fluorescence: Principles and applications. Weinheim: Wiley-VCH, 2002.

    22. [22]

      Xiao Q Q, Dong G Y, Li Y H, Cui G H. Cobalt(Ⅱ)-based 3D coordination polymer with unusual 4, 4, 4-connected topology as a dual-responsive fluorescent chemosensor for acetylacetone and Cr2O72-[J]. Inorg. Chem., 2019,58:15696-15699. doi: 10.1021/acs.inorgchem.9b02534

    23. [23]

      Wu J, Li B H, Zhong H R, Qiu S W, Liang Y W, Zhuang X Y, Singh A, Kumar A. Fluorescence sensing and photocatalytic properties of a 2D stable and biocompatible Zn(Ⅱ)-based polymer[J]. J. Mol. Struct., 2018,1158:264-270. doi: 10.1016/j.molstruc.2018.01.028

    24. [24]

      Wiwasuku T, Boonmak J, Siriwong K, Ervithayasuporn V, Youngme S. Highly sensitive and selective fluorescent sensor based on a multi-responsive ultrastable amino-functionalized Zn(Ⅱ)-MOF for hazardous chemicals[J]. Sens. Actuator B-Chem., 2019,284:403-413. doi: 10.1016/j.snb.2018.12.094

    25. [25]

      Senthilkumar S, Goswami R, Obasi N L, Neogi S. Construction of pillar-layer metal-organic frameworks for CO2 adsorption under humid climate: High selectivity and sensitive detection of picric acid in water[J]. ACS Sustain. Chem. Eng., 2017,5:11307-11315. doi: 10.1021/acssuschemeng.7b02087

    26. [26]

      Yang Y, Shen K, Lin J Z, Zhou Y, Liu Q Y, Hang C, Abdelhamid H N, Zhang Z Q, Chen H. A Zn-MOF constructed from electron-rich π-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor[J]. RSC Adv., 2016,6:45475-45481. doi: 10.1039/C6RA00524A

    27. [27]

      Jia W, Ren S M, Xia H C, Zhang C, Zhang J F. An ultra-stable Cd coordination polymer based on double-chelated ligand for efficient dual-response of TNP and MnO4-[J]. Sens. Actuator B-Chem., 2020,317128230. doi: 10.1016/j.snb.2020.128230

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    14. [14]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    15. [15]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    16. [16]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    19. [19]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    20. [20]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

Metrics
  • PDF Downloads(1)
  • Abstract views(896)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return