Citation: Wen-Wu ZHOU, Xiao-Yi WEI, Meng-Yu XU, Fei FAN, Zhi-Ping CHEN, Jie KANG, Le ZHANG, An-Ning ZHOU. Theoretical investigation on the mechanism of CO2 hydrogenation to methanol over single atom Ge promoter doped Cu(111) surface[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1261-1274. doi: 10.11862/CJIC.2023.100 shu

Theoretical investigation on the mechanism of CO2 hydrogenation to methanol over single atom Ge promoter doped Cu(111) surface

  • Corresponding author: Wen-Wu ZHOU, Zhww1015@163.com
  • Received Date: 9 January 2023
    Revised Date: 7 April 2023

Figures(11)

  • In this work, we proposed a novel strategy, doping single atom Ge promoter to the Cu(111) surface, to overcome the shortcomings such as the difficulties in the adsorption and activation of CO2 molecules and the complex by-products produced in both the reverse water gas shift (RWGS) and the formate reaction pathway. The electron modulating effect of single atom Ge species on the reaction mechanism of CO2 hydrogenation to methanol over Ge-Cu(111) surface was detailly investigated by the density functional theory (DFT) method. The results show that the electron supply ability of Cu atoms adjacent to the single Ge atom is greatly enhanced due to the electron modulating effect of Ge species, which leads to the improved interaction between the CO2 molecule and the active interface: the adsorption energy of CO2 over the single atom Ge promoted Cu(111) surface was approximately 1.5 times that over the pure Cu(111) surface and approximately 2.4 times that over clustered Pd modified Cu(111) surface, respectively. The enhanced CO2 adsorption ability further resulted in a decline in the activation energy of the reaction rate control step for the RWGS pathway by about 20 kJ·mol-1, meanwhile, there emerged three new potential RWGS reaction routes that only produced methanol. Moreover, the formate reaction pathway is kinetically inhibited over the Ge-Cu(111) surface, leading to the reduced by-products such as CO and hydrocarbons to improve both the selectivity of methanol in the CO2 hydrogenation to methanol reaction.
  • 加载中
    1. [1]

      Koytsoumpa E I, Bergins C, Kakaras E. The CO2 economy: Review of CO2 capture and reuse technologies[J]. J. Supercrit. Fluids, 2018,132:3-16. doi: 10.1016/j.supflu.2017.07.029

    2. [2]

      Zhang Z T, Shen C Y, Sun K H, Jia X Y, Ye J Y, Liu C J. Advances in studies of structural effect of the supported Ni catalyst for CO2 hydrogenation: From nanoparticle to single atom catalyst[J]. J. Mater. Chem. A, 2022,10(11):5792-5812. doi: 10.1039/D1TA09914K

    3. [3]

      Guo J X, Wang Z Y, Li J L, Wang Z. In-Ni intermetallic compounds derived from layered double hydroxides as efficient catalysts toward the reverse water gas shift reaction[J]. ACS Catal., 2022,12(7):4026-4036. doi: 10.1021/acscatal.2c00671

    4. [4]

      YANG L L, MENG F H, ZHANG P, LIANG X T, LI Z. Catalytic performance for CO2 hydrogenation to light olefins over ZrCdOx/SAPO‑18 bifunctional catalyst[J]. Chinese J. Inorg. Chem., 2021,37(3):448-456.  

    5. [5]

      ZHANG Q, WEN Y L, WANG B, FAN H M, YANG C, SONG R P, ZHANG W Z, HUANG W. Effect of component control of catalysts with dual Ligand CuFe@MOFs as precursor on performance of CO2 hydrogenation to C2+ alcohol[J]. Chinese J. Inorg. Chem., 2021,37(8):1390-1398.  

    6. [6]

      Wang X Y, Zhang H B. Kinetically relevant variation triggered by hydrogen pressure: A mechanistic case study of CO2 hydrogenation to methanol over Cu/ZnO[J]. J. Catal., 2022,406:145-156. doi: 10.1016/j.jcat.2021.12.034

    7. [7]

      Xie G M, Jin R R, Ren P J, Fang Y M, Zhang R D, Wang Z J. Boosting CO2 hydrogenation to methanol by adding trace amount of Au into Cu/ZnO catalysts[J]. Appl. Catal. B-Environ., 2023,324122233. doi: 10.1016/j.apcatb.2022.122233

    8. [8]

      Zhang S N, Wu Z X, Liu X F, Hua K M, Shao Z L, Wei B Y, Huang C J, Wang H, Sun Y H. A short review of recent advances in direct CO2 hydrogenation to alcohols[J]. Top. Catal., 2021,64(5):371-394.

    9. [9]

      Din I U, Shaharun M S, Alotaibi M A, Alharthi A I, Naeem A. Recent developments on heterogeneous catalytic CO2 reduction to methanol[J]. J. CO2 Util., 2019,34:20-33. doi: 10.1016/j.jcou.2019.05.036

    10. [10]

      Yang K W, Jiang J W. Computational design of a metal-based frustrated Lewis pair on defective UiO-66 for CO2 hydrogenation to methanol[J]. J. Mater. Chem. A, 2020,8(43):22802-22815. doi: 10.1039/D0TA07051C

    11. [11]

      Marcos F C, Alvim R S, Lin L L, Betancourt L E, Petrolini D D, Senanayake S D, Alves R M, Assaf J M, Rodriguez J A, Giudici R. The role of copper crystallization and segregation toward enhanced methanol synthesis via CO2 hydrogenation over CuZrO2 catalysts: A combined experimental and computational study[J]. Chem. Eng. J., 2023,452139519. doi: 10.1016/j.cej.2022.139519

    12. [12]

      Rui N, Shi R, Gutiérrez R A, Rosales R, Kang J D, Mahapatra M, Ramírez P J, Senanayake S D, Rodriguez J A. CO2 hydrogenation on ZrO2/Cu(111) surfaces: production of methane and methanol[J]. Ind. Eng. Chem. Res., 2021,60(51):18900-18906. doi: 10.1021/acs.iecr.1c03229

    13. [13]

      Halder A, Lenardi C, Timoshenko J, Mravak A, Yang B, Kolipaka L K, Piazzoni C, Seifert S, Bonacic-koutecky V, Frenkel A I. CO2 methanation on Cu-cluster decorated zirconia supports with different morphology: A combined experimental in situ GIXANES/GISAXS, ex situ XPS and theoretical DFT study[J]. ACS Catal., 2021,11(10):6210-6224. doi: 10.1021/acscatal.0c05029

    14. [14]

      Jiang X, Nie X W, Guo X W, Song C S, Chen J G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem. Rev., 2020,120(15):7984-8034. doi: 10.1021/acs.chemrev.9b00723

    15. [15]

      Zhong J W, Yang X F, Wu Z L, Liang B L, Huang Y Q, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem. Soc. Rev., 2020,49(5):1385-1413. doi: 10.1039/C9CS00614A

    16. [16]

      Guil-López R, Mota N, Llorente J, Millán E, Pawelec B, Fierro J L G, Navarro R. Methanol synthesis from CO2: A review of the latest developments in heterogeneous catalysis[J]. Materials, 2019,12(23)3902. doi: 10.3390/ma12233902

    17. [17]

      Jiang X, Nie X W, Wang X X, Wang H Z, Koizumi N, Chen Y G, Guo X W, Song C S. Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation[J]. J. Catal., 2019,369:21-32. doi: 10.1016/j.jcat.2018.10.001

    18. [18]

      LIU C H, GUO X M, ZHONG C L, LI L, HUA Y X, MAO D S, LU G Z. Methanol synthesis from CO2 hydrogenation over supported CuO/TiO2 Catalysts[J]. Chinese J. Inorg. Chem., 2016,32(8):1405-1412.  

    19. [19]

      DONG H N, GE Y Y, WEI X Y, LIU D P, YAN D Y, YAN S C. Electrodepositing dense Sn/SnBi alloy on carbon cloth for electrocatalytic CO2 reduction[J]. Chinese J. Inorg. Chem., 2022,38(12):2433-2442. doi: 10.11862/CJIC.2022.250 

    20. [20]

      Ye R, Zhao J, Wickemeyer B B, Toste F D, SomorjaI G A. Foundations and strategies of the construction of hybrid catalysts for optimized performances[J]. Nat. Catal., 2018,1(5):318-325. doi: 10.1038/s41929-018-0052-2

    21. [21]

      YU Y, HAO A X, CHEN H B, HE J, WEI S X, YIN Y S. Effect of TiO2 as promoter on catalytic performance of Cu-ZnO/ZrO2 in hydrogenation of CO2 to methanol[J]. Petrochemical Technology, 2014,43(5):511-516. doi: 10.3969/j.issn.1000-8144.2014.05.005

    22. [22]

      DAI W H, XIN Z. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2022,73(8):3586-3596.  

    23. [23]

      LI G X, TIAN T, ZHANG Q, LI H X, DONG P, LI H W. Recent Advances of Nanomaterials in Hydrogenation of CO2 to Methanol[J]. Journal of Molecular Catalysis(China), 2022,36(2):190-198.  

    24. [24]

      LIANG Z M, NIE X W, GUO X W, SONG C S. DFT insight into the effect of Ni doping on hydrocarbons synthesis from CO2 hydrogenation over Fe catalyst[J]. Journal of Molecular Catalysis(China), 2022,36(2):190-198.  

    25. [25]

      Toyir J, de la Piscina P R, Fierro J L G, Homs N S. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: Influence of metallic precursors[J]. Appl. Catal. B-Environ., 2001,34(4):255-266. doi: 10.1016/S0926-3373(01)00203-X

    26. [26]

      SONG M, AN X Q, LIU Z. The promotional effect during hydrogenation of CO2 to methanol over Cu based catalysts[J]. Chemical Engineering Design Communications, 2022,48(5):7-11.  

    27. [27]

      Melián-cabrera I, Granados M L, Fierro J L G. Pd-modified Cu-Zn catalysts for methanol synthesis from CO2/H2 mixtures: Catalytic structures and performance[J]. J. Catal., 2002,210(2):285-294. doi: 10.1006/jcat.2002.3677

    28. [28]

      Rasteiro L F, De Sousa R A, Vieira L H, Ocampo-Restrepo V K, Verga L G, Assaf J M, Da Silva J L, Assaf E M. Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide‑supported Ni5Ga3 catalysts: An experimental and DFT study[J]. Appl. Catal. B-Environ., 2022,302120842. doi: 10.1016/j.apcatb.2021.120842

    29. [29]

      WU T W, JIA G X, BAO J X, LIU Y Y, AN S L. Electronic structures and oxygen ion migrations of the CaO or BaO and Sm2O3 co-doped CeO2 system: A DFT+U study[J]. Chinese J. Inorg. Chem., 2016,32(8):1363-1369.  

    30. [30]

      WANG X F, SHENG C Y, WU J L, YE X Q. First-principles calculation of H/CO2 interaction in plasma: A density functional theory-based study[J]. Chinese J. Inorg. Chem., 2022,38(8):1470-1476.  

    31. [31]

      Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B L. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012,336(6083):893-897. doi: 10.1126/science.1219831

    32. [32]

      Yang Y X, White M G, Liu P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu (111) surfaces[J]. J. Phys. Chem. C, 2012,116(1):248-256. doi: 10.1021/jp208448c

    33. [33]

      Kanuri S, Roy S, Chakraborty C, Datta S P, Singh S A, Dinda S. An insight of CO2 hydrogenation to methanol synthesis: Thermodynamics, catalysts, operating parameters, and reaction mechanism[J]. Int. J. Energy Res., 2022,46(5):5503-5522. doi: 10.1002/er.7562

    34. [34]

      ZHANG K W, CHEN Y F, HU T P, LÜ X M. Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst[J]. Journal of Fuel Chemistry and Technology, 2021,49(11):1684-1692.  

    35. [35]

      Taylor P A, Rasmussen P B, Chorkendorff I. Is the observed hydrogenation of formate the rate-limiting step in methanol synthesis?[J]. J. Chem. Soc. Faraday Trans., 1995,91(8):1267-1269. doi: 10.1039/ft9959101267

    36. [36]

      Yang Y, Mei D H, Peden C H F, Campbell C T, MIMS C A. Surface-bound intermediates in low-temperature methanol synthesis on copper: Participants and spectators[J]. ACS Catal., 2015,5(12):7328-7337. doi: 10.1021/acscatal.5b02060

    37. [37]

      Kattel S, Yan B H, Yang Y X, Chen J G, Liu P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. J. Am. Chem. Soc., 2016,138(38):12440-12450. doi: 10.1021/jacs.6b05791

    38. [38]

      Karelovic A, Galdames G, Medina J C, Yévenes C, Barra Y, Jiménez R. Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles[J]. J. Catal., 2019,369:415-426. doi: 10.1016/j.jcat.2018.11.012

    39. [39]

      Hong Q J, Liu Z P. Mechanism of CO2 hydrogenation over Cu/ZrO2 (212) interface from first-principles kinetics Monte Carlo simulations[J]. Surf. Sci., 2010,604(21/22):1869-1876.

    40. [40]

      Grabow L, Mavrikakis M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catal., 2011,1(4):365-384. doi: 10.1021/cs200055d

    41. [41]

      Liu C, Yang B, Tyo E, Seifert S, Debartolo J, von Issendorff B, Zapol P, Vajda S, Curtiss L A. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures[J]. J. Am. Chem. Soc., 2015,137(27):8676-8679. doi: 10.1021/jacs.5b03668

    42. [42]

      Jiang X, Koizumi N, Guo X W, Song C S. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol[J]. Appl. Catal. B-Environ., 2015,170-171:173-185. doi: 10.1016/j.apcatb.2015.01.010

    43. [43]

      Gaikwad R, Bansode A, Urakawa A. High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol[J]. J. Catal., 2016,343:127-132. doi: 10.1016/j.jcat.2016.02.005

    44. [44]

      Rodriguez J A, Evans J, Feria L, Vidal A B, Liu P, Nakamura K, Illas F. CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane[J]. J. Catal., 2013,307:162-169. doi: 10.1016/j.jcat.2013.07.023

    45. [45]

      Peng G W, Sibener S, Schatz G C, Ceyer S T, Mavrikakis M. CO2 hydrogenation to formic acid on Ni (111)[J]. J. Phys. Chem. C, 2012,116(4):3001-3006. doi: 10.1021/jp210408x

    46. [46]

      Larmier K, Liao W C, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Copéret C. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal-support interface[J]. Angew. Chem. Int. Ed., 2017,56(9):2318-2323. doi: 10.1002/anie.201610166

    47. [47]

      Kattel S, Ramírez P J, Chen J G, Rodriguez J A, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017,355(6331):1296-1299. doi: 10.1126/science.aal3573

    48. [48]

      Bustamante F, Enick R M, Cugini A V, Killmeyer R P, Howard B H, Rothenberger K S, Ciocco M, Morreale B, Chattopadhyay S, Shi S. High-temperature kinetics of the homogeneous reverse water-gas shift reaction[J]. AIChE J., 2004,50(5):1028-1041. doi: 10.1002/aic.10099

    49. [49]

      HOU R J, QIU R, SUN K N. Progress in the Cu-based catalyst supports for methanol synthesis from CO2[J]. Chemical Industry and Engineering Progress, 2020,39(7):2639-2647.  

    50. [50]

      Fan F, Chen Z P, Zhou A N, Yang Z Y, Zhang Y T, He X X, Kang J, Zhou W W. Theoretical investigation on the inert pair effect of Ga on both the Ga-Ni-Mo-S nanocluster and the direct desulfurization of 4, 6-dimethyldibenzothiophene[J]. Fuel, 2023,333126351. doi: 10.1016/j.fuel.2022.126351

    51. [51]

      Zhou W W, Zhang Q, Zhou Y S, Wei Q, Du L, Ding S J, Jiang S J, Zhang Y N. Effects of Ga-and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels[J]. Catal. Today, 2018,305:171-181. doi: 10.1016/j.cattod.2017.07.006

    52. [52]

      Zhao H B, Yu R F, Ma S C, Xu K Z, Chen Y, Jiang K, Fang Y, Zhu C X, Liu X C, Tang Y. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation[J]. Nat. Catal., 2022,5(9):818-831. doi: 10.1038/s41929-022-00840-0

    53. [53]

      Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys., 1990,92(1):508-517. doi: 10.1063/1.458452

    54. [54]

      Delley B. From molecules to solids with the DMol3 approach[J]. J. Chem. Phys., 2000,113(18):7756-7764. doi: 10.1063/1.1316015

    55. [55]

      Perdew J P, Burke K, Ernzerhof M. Comment on "Generalized gradient approximation made simple"-Reply[J]. Phys. Rev. Lett., 1998,80(4)891. doi: 10.1103/PhysRevLett.80.891

    56. [56]

      Bergner A, Dolg M, Küchle W, Stoll H, Preuß H. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17[J]. Mol. Phys., 1993,80(6):1431-1441. doi: 10.1080/00268979300103121

    57. [57]

      Grimme S. Semiempirical GGA‐type density functional constructed with a long-range dispersion correction[J]. J. Comput. Chem., 2006,27(15):1787-1799. doi: 10.1002/jcc.20495

    58. [58]

      Halgren T A, Lipscomb W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem. Phys. Lett., 1977,49(2):225-232. doi: 10.1016/0009-2614(77)80574-5

    59. [59]

      Sharma S K, Paul B, Pal R S, Bhanja P, Banerjee A, Samanta C, Bal R. Influence of indium as a promoter on the stability and selectivity of the nanocrystalline Cu/CeO2 catalyst for CO2 hydrogenation to methanol[J]. ACS Appl. Mater. Interfaces, 2021,13(24):28201-28213. doi: 10.1021/acsami.1c05586

    60. [60]

      Lide D R. CRC Handbook of Chemistry and Physics. 87th ed. Florida: CRC Press, 2007: 1438

    61. [61]

      Guo C, Wei S X, Zhou S N, Zhang T, Wang Z J, Ng S-P, Lu X Q, Wu C M L, Guo W Y. Initial reduction of CO2 on Pd-, Ru-, and Cu-doped CeO2(111) surfaces: Effects of surface modification on catalytic activity and selectivity[J]. ACS Appl. Mater. Interfaces, 2017,9(31):26107-26117. doi: 10.1021/acsami.7b07945

    62. [62]

      Liu L N, Fan F, Jiang Z, Gao X F, Wei J J, Fang T. Mechanistic study of Pd-Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation[J]. J. Phys. Chem. C, 2017,121(47):26287-26299. doi: 10.1021/acs.jpcc.7b06166

    63. [63]

      Tang Q L, Hong Q J, Liu Z P. CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo[J]. J. Catal., 2009,263(1):114-122. doi: 10.1016/j.jcat.2009.01.017

    64. [64]

      ZHANG R G. Studies on the modulation of structure and the regulation of catalytic performance for Cu-based catalysts in one-carbon reaction. Taiyuan: Taiyuan University of Technology, 2013: 61-72

    65. [65]

      Yin K J, Shen Y L. Theoretical insights into CO2 hydrogenation to HCOOH over FexZr1-xO2 solid solution catalyst[J]. Appl. Surf. Sci., 2020,528146926. doi: 10.1016/j.apsusc.2020.146926

    66. [66]

      Liu L N, Fan F, Bai M M, Xue F, Ma X R, Jiang Z, Fang T. Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu(111) surfaces[J]. Mol. Catal., 2019,466:26-36. doi: 10.1016/j.mcat.2019.01.009

    67. [67]

      Yan Y, Wong R J, Ma Z R, Donat F, Xi S B, Saqline S, Fan Q W H, Du Y H, Borgna A, He Q. CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts[J]. Appl. Catal. B-Environ., 2022,306121098. doi: 10.1016/j.apcatb.2022.121098

    68. [68]

      Zhao Y F, Yang Y, Mims C, Peden C H, LI J, Mei D. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J]. J. Catal., 2011,281(2):199-211. doi: 10.1016/j.jcat.2011.04.012

    69. [69]

      Gokhale A A, Dumesic J A, Mavrikakis M. On the mechanism of low-temperature water gas shift reaction on copper[J]. J. Am. Chem. Soc., 2008,130(4):1402-1414. doi: 10.1021/ja0768237

    70. [70]

      Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Fen G Z C, An H Y, Li C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal., 2017,7(12):8544-8548. doi: 10.1021/acscatal.7b03251

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    6. [6]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    18. [18]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    19. [19]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    20. [20]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

Metrics
  • PDF Downloads(6)
  • Abstract views(754)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return