Citation: Li-Xin SU, Xian-Mei WANG, Qing-Yan JIANG, Hui-Min ZHANG, Yi-Wen LU, Qi LIU. A two-dimensional Co-based coordination polymer [KCo(pa)(OH)]n as the electrode material of supercapacitors with higher-capacity[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1481-1488. doi: 10.11862/CJIC.2023.099 shu

A two-dimensional Co-based coordination polymer [KCo(pa)(OH)]n as the electrode material of supercapacitors with higher-capacity

Figures(7)

  • A two-dimensional cobalt-based coordination polymer ([KCo(pa)(OH)]n, Co-pa, H2pa=phthalic acid) was synthesized by a simple solvothermal reaction of Co(Ac)2·4H2O and phthalic acid, and characterized by FT-IR spectrum, thermogravimetric analysis, powder X-ray diffraction, X-ray photoelectron spectrum, scanning electron microscope, and N2 adsorption-desorption isotherm. When Co-pa was used as the electrode material for supercapacitors, the Co-pa electrode presented a higher specific capacitance, better rate performance, and cycle stability. At the current densities of 1 and 10 A·g-1, the specific capacitances were 910 and 400 F·g-1, respectively. After 2 000 cycles at 2 A·g-1, the capacitance retention remains 81%. The better pseudo-capacitance performance is attributed to Co-pa nanorods with small size, Co(Ⅱ) ions included in Co-pa, phthalate anions, and their layered structure.
  • 加载中
    1. [1]

      Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat. Mater., 2008,7(11):845-854. doi: 10.1038/nmat2297

    2. [2]

      Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy Environ. Sci., 2014,7(1):14-18. doi: 10.1039/C3EE42613K

    3. [3]

      Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Design and mechanisms of asymmetric supercapacitors[J]. Chem. Rev., 2018,118(18):9233-9238. doi: 10.1021/acs.chemrev.8b00252

    4. [4]

      Saraf M, Natarajan K, Mobin S M. Emerging robust heterostructure of MoS2-rGO for high-performance supercapacitors[J]. ACS Appl. Mater. Interfaces, 2018,10(19):16588-16595. doi: 10.1021/acsami.8b04540

    5. [5]

      Choi B G, Yang M, Hong W H, Choi J W, Huh Y S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano, 2012,6(5):4020-4028. doi: 10.1021/nn3003345

    6. [6]

      Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2012,41(2):797-828. doi: 10.1039/C1CS15060J

    7. [7]

      Zhao J, Jiang Y F, Fan H, Liu M, Zhuo O, Wang X Z, Wu Q, Yang L J, Ma Y W, Hu Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship[J]. Adv. Mater., 2017,29(11)1604569. doi: 10.1002/adma.201604569

    8. [8]

      Li Y, Xie H Q, Li J, Yamauchi Y, Henzie J. Metal-organic framework-derived CoOx/carbon composite array for high-performance supercapacitors[J]. ACS Appl. Mater. Interfaces, 2021,13(35):41649-41656. doi: 10.1021/acsami.1c10998

    9. [9]

      Li G C, Mao K, Liu M, Yan M L, Zhao J, Zeng Y, Yang L J, Wu Q, Wang X Z, Hu Z. Achieving ultrahigh volumetric energy storage by compressing nitrogen and sulfur dual-doped carbon nanocages via capillarity[J]. Adv. Mater., 2020,32(52)2004632. doi: 10.1002/adma.202004632

    10. [10]

      Zheng S S, Xue H G, Pang H. Supercapacitors based on metal coordination materials[J]. Coord. Chem. Rev., 2018,373(15):2-21.

    11. [11]

      Wang L, Han Y Z, Feng X, Zhou J W, Qi P F, Wang B. Metal-organic frameworks for energy storage: Batteries and supercapacitors[J]. Coord. Chem. Rev., 2016,307:361-381. doi: 10.1016/j.ccr.2015.09.002

    12. [12]

      Rong H R, Song P, Gao G X, Jiang Q Y, Chen X J, Su L X, Liu W L, Liu Q. A three-dimensional Mn-based MOF as a high-performance supercapacitor electrode[J]. Dalton Trans., 2023,52(7):1962-1969. doi: 10.1039/D2DT02857C

    13. [13]

      Choi K M, Jeong H M, Park J H, Zhang Y B, Kang J K, Yaghi O M. Supercapacitors of nanocrystalline metal organic frameworks[J]. ACS Nano, 2014,8(7):7451-7457. doi: 10.1021/nn5027092

    14. [14]

      Wang L, Feng X, Ren L T, Piao Q H, Zhong J Q, Wang Y B, Li H W, Chen Y F, Wang B. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. J. Am. Chem. Soc., 2015,137(15):4920-4923. doi: 10.1021/jacs.5b01613

    15. [15]

      Wang K B, Cao X R, Wang S, Zhao W J, Xu J Y, Wang Z K, Wu H. Interpenetrated and polythreaded Co-organic frameworks as a supercapacitor electrode material with ultrahigh capacity and excellent energy delivery efficiency[J]. ACS Appl. Mater. Interfaces, 2018,10(10):9104-9115. doi: 10.1021/acsami.7b16141

    16. [16]

      Yu L L, Wang X M, Cheng M L, Rong H R, Song Y D, Liu Q. A three-dimensional copper coordination polymer constructed by 3-methyl-1H-pyrazole-4-carboxylic acid with higher capacitance for supercapacitors[J]. Cryst. Growth Des., 2018,18(1):280-285. doi: 10.1021/acs.cgd.7b01219

    17. [17]

      Kazemi S H, Hosseinzadeh B, Kazemi H, Kiani M A, Hajati S. Facile synthesis of mixed metal organic frameworks: Electrode materials for supercapacitor with excellent areal capacitance and operational stability[J]. ACS Appl. Mater. Interfaces, 2018,10(27):23063-23073. doi: 10.1021/acsami.8b04502

    18. [18]

      Sanati S, Abazari R, Morsali A, Kirillov A M, Junk P C, Wang J. An asymmetric supercapacitor based on a non-calcined 3D pillared cobalt(Ⅱ) metal-organic framework with long cyclic stability[J]. Inorg. Chem., 2019,58(23):16100-16111. doi: 10.1021/acs.inorgchem.9b02658

    19. [19]

      Rajak R, Saraf M, Mobin S M. Mixed-ligand architected unique topological heterometallic sodium/cobalt-based metal-organic framework for high-performance supercapacitors[J]. Inorg. Chem., 2020,59(3):1642-1652. doi: 10.1021/acs.inorgchem.9b02762

    20. [20]

      Wang K B, Wang S, Liu J D, Guo Y X, Mao F F, Wu H, Zhang Q C. Fe-based coordination polymers as battery-type electrodes in semi-solid-state battery-supercapacitor hybrid devices[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15315-15323. doi: 10.1021/acsami.1c01339

    21. [21]

      Wang K B, Bi R, Huang M L, Lv B, Wang H J, Li C, Wu H, Zhang Q C. Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices[J]. Inorg. Chem., 2020,59(10):6808-6814. doi: 10.1021/acs.inorgchem.0c00060

    22. [22]

      Wu Q S, Bigdeli F, Rouhani F, Gao X M, Kaviani H, Li H J, Wang W, Liu K G, Hu M L, Cai X Q, Morsali A. New 3D porous silver nanopolycluster as a highly effective supercapacitor electrode: Synthesis and study of the optical and electrochemical properties[J]. Inorg. Chem., 2021,60(3):1523-1532. doi: 10.1021/acs.inorgchem.0c02875

    23. [23]

      Rajak R, Saraf M, Kumar P, Natarajan K, Mobin S M. Construction of a Cu-based metal-organic framework by employing a mixed-ligand strategy and its facile conversion into nanofibrous CuO for electrochemical energy storage applications[J]. Inorg. Chem., 2021,60(22):16986-16995. doi: 10.1021/acs.inorgchem.1c02062

    24. [24]

      Liu J J, Zhou Y, Xie Z, Li Y, Liu Y P, Sun J, Ma Y H, Terasaki O, Chen L. Conjugated copper-catecholate framework electrodes for efficient energy storage[J]. Angew. Chem. Int. Ed., 2020,59(3):1081-1086. doi: 10.1002/anie.201912642

    25. [25]

      Ma Y W, Gao G X, Su H Q, Rong H R, Lai L F, Liu Q. A Cu4 cluster-based MOF as a supercapacitor electrode material with ultrahigh capacitance[J]. Ionics, 2021,27(4):1699-1707. doi: 10.1007/s11581-021-03954-w

    26. [26]

      Gao G X, Wang X M, Ma Y W, Rong H R, Lai L F, Liu Q. A three-dimensional Co5-cluster-based MOF as a high performance electrode material for supercapacitor[J]. Ionics, 2020,26(10):5189-5197. doi: 10.1007/s11581-020-03649-8

    27. [27]

      RONG H R, WANG X M, MA Y W, GAO G X, SU H Q, LAI L F, LIU Q. Three-dimensional cobalt-based MOF[KCo7(OH)3(ip)6(H2O)4]·12H2O as a high-capacity electrode materials for supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(2):206-212.  

    28. [28]

      Yang J, Xiong P X, Zheng C, Qiu H Y, Wei M D. Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode[J]. J. Mater. Chem. A, 2014,2(39):16640-16644. doi: 10.1039/C4TA04140B

    29. [29]

      Yang J, Zheng C, Xiong P X, Li Y F, Wei M D. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. J. Mater. Chem. A, 2014,2(44):19005-19010. doi: 10.1039/C4TA04346D

    30. [30]

      Yang J, Ma Z H, Gao W X, Wei M D. Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode[J]. Chem. Eur. J., 2017,23(3):631-636. doi: 10.1002/chem.201604071

    31. [31]

      Liu Q, Liu X X, Shi C D, Zhang Y P, Feng X J, Cheng M L, Su S, Gu J D. A copper-based layered coordination polymer: Synthesis, magnetic properties and electrochemical performance in supercapacitors[J]. Dalton Trans., 2015,44(44):19175-19184. doi: 10.1039/C5DT02918J

    32. [32]

      Liu X X, Shi C D, Zhai C W, Cheng M L, Liu Q, Wang G X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS Appl. Mater. Interfaces, 2016,8(7):4585-4591. doi: 10.1021/acsami.5b10781

    33. [33]

      Wang X M, Liu X X, Rong H R, Song Y D, Wen H, Liu Q. Layered manganese-based metal-organic framework as a high capacity electrode material for supercapacitors[J]. RSC Adv., 2017,7(47):29611-29617. doi: 10.1039/C7RA04374K

    34. [34]

      Sheberla D, Bachman J C, Elias J S, Sun C J, Horn Y S, Dincǎ M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nat. Mater., 2017,16(2):220-224. doi: 10.1038/nmat4766

    35. [35]

      Feng D W, Lei T, Lukatskaya M R, Park J, Huang Z, Lee M, Shaw L, Chen S, Yakovenko A A, Kulkarni A, Xiao J, Fredrickson K, Tok J B, Zou X, Cui Y, Bao Z. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance[J]. Nat. Energy, 2018,3(1):30-36. doi: 10.1038/s41560-017-0044-5

    36. [36]

      RONG H R, WANG X M, WEI Y H, CHEN X J, LAI L F, LIU Q. A layered Co-MOF based electrode material of supercapacitor with high-capacity[J]. Chinese J. Inorg. Chem., 2021,37(12):2227-2234.  

    37. [37]

      Sun G C, Yu L L, Hu Y, Sha Y Y, Rong H R, Li B L, Liu H J, Liu Q. A manganese-based coordination polymer containing no solvent as a high performance anode in Li-ion batteries[J]. Cryst. Growth Des., 2019,19(11):6503-6510. doi: 10.1021/acs.cgd.9b00962

    38. [38]

      Su H Q, Song Y D, Hu Y, Ma Y W, Liu W L, Liu H J, Liu Q. A copper-based polycarbonyl coordination polymer as a cathode for Li ion batteries[J]. Cryst. Growth Des., 2021,21(7):3668-3676. doi: 10.1021/acs.cgd.0c01578

    39. [39]

      Cheng X N, Xue W, Zhang W X, Chen X M. Weak ferromagnetism and dynamic magnetic behavior of two 2D compounds with hydroxy/carboxylate-bridged Co(Ⅱ) chains[J]. Chem. Mater., 2008,20:5345-5350. doi: 10.1021/cm8012599

    40. [40]

      LIU S H, WANG D H, PAN C H. X-ray photoelectron spectroscopy analysis. Beijing: Science Press, 1998.

    41. [41]

      Rajak R, Saraf M, Mohammad A, Mobin S M. Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications[J]. J. Mater. Chem. A, 2017,5(34):17998-18011. doi: 10.1039/C7TA03773B

    42. [42]

      Kang L, Sun S X, Kong L B, Lang J W, Luo Y C. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors[J]. Chin. Chem. Lett., 2014,25(6):957-961. doi: 10.1016/j.cclet.2014.05.032

    43. [43]

      Wang K B, Wang Z K, Wang X, Zhou X Q, Tao Y H, Wu H. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies[J]. J. Power Sources, 2018,377:44-51. doi: 10.1016/j.jpowsour.2017.11.087

    44. [44]

      Hou X Y, Yan X L, Wang X, Li S N, Jiang Y C, Hu M C, Zhai Q Z. Excellent supercapacitor performance of robust nickel-organic framework materials achieved by tunable porosity, inner-cluster redox, and in situ fabrication with graphene oxide[J]. Cryst. Growth Des., 2018,18(10):6035-6045. doi: 10.1021/acs.cgd.8b00881

    45. [45]

      Liu K, Deng L M, Li H D, Bao Y X, Xiao Z Y, Li B, Zhou Q, Geng Y L, Wang L. Two isostructural Co/Ni fluorine-containing metal-organic frameworks for dye adsorption and supercapacitor[J]. J. Soild State Chem., 2019,275:1-7. doi: 10.1016/j.jssc.2019.03.052

    46. [46]

      Xue Y Y, Li S N, Jiang Y C, Hu M C, Zhai Q G. Quest for 9-connected robust metal-organic framework platforms on the base of[M3(O/OH)(COO)6(pyridine)3] cluster as excellent gas separation and asymmetric supercapacitor materials[J]. J. Mater. Chem. A, 2019,7(9):4640-4650. doi: 10.1039/C8TA09080G

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    16. [16]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(1)
  • Abstract views(682)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return