Citation: Yu ZHU, Wei-Qi LUO, Dong-Mei HOU, Chu-Wen LI, Zheng-Zhou DUAN, Qin-Yun XU, Gui-Cheng GAO, Ji-Jun TANG. Decorated BiOI on MIL-101(Fe)@BiOI derived BiFeO3@Fe2O3 for improved photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1415-1428. doi: 10.11862/CJIC.2023.096 shu

Decorated BiOI on MIL-101(Fe)@BiOI derived BiFeO3@Fe2O3 for improved photocatalytic performance

Figures(18)

  • Herein, MIL-101(Fe)@BiOI composites have been synthesized by hydrothermal method and then calcined to get BiFeO3@Fe2O3@BiOI composites with high photocatalytic capacity. The composition, structure, and morphology of the composites were characterized by X-ray diffraction, scanning electron microscopy, and UV-Vis diffuse reflection absorption spectroscopy. The effects of composite ratio (mass ratio), pH, and concentration on photocatalytic performance were studied. Electrochemical impedance spectroscopy, photocurrent response, and Mott-Schottky curve test and analysis show that BiFeO3@Fe2O3@BiOI shows stronger photocurrent response and lower charge transfer resistance. The degradation activity of BiFeO3@Fe2O3@BiOI showed the highest in neutral conditions with a removal efficiency of 81% when the mass ratio was 1∶1∶1.
  • 加载中
    1. [1]

      Mehraj O, Pirzada B M, Mir N A, Khan M Z, Sabir S. A highly efficient visible-light-driven novel p-n junction Fe2O3/BiOI photocatalyst: Surface decoration of BiOI nanosheets with Fe2O3 nanoparticles[J]. Appl. Surf. Sci., 2016,387(30):642-651.

    2. [2]

      Wang Q, Shi X, Liu E, C J, Crittenden , Ma X J, Zhang Y, Cong Y Q. Facile synthesis of AgI/BiOI-Bi2O3 multi - heterojunctions with high visible light activity for Cr(Ⅵ) reduction[J]. J. Hazard. Mater., 2016,317:8-16. doi: 10.1016/j.jhazmat.2016.05.044

    3. [3]

      Chang M J, Wang H, Li H L, Liu J, Du H L. Facile preparation of novel Fe2O3/BiOI hybrid nanostructures for efficient visible light photocatalysis[J]. J. Mater. Sci. Technol., 2017,53(5):3682-3691.

    4. [4]

      Zhang Y, Li Y, Sun W N, Yuan C X, Wang B X, Zhang W, Song X M. Fe2O3/BiOI - based photoanode with n-p heterogeneous structure for photoelectric conversion[J]. Langmuir, 2017,33(43):12065-12071. doi: 10.1021/acs.langmuir.7b02969

    5. [5]

      Bera S, Ghosh S, Shyamal S, Bhattacharya C, Basu R N. Photocatalytic hydrogen generation using gold decorated BiFeO3 heterostructures as an efficient catalyst under visible light irradiation[J]. Sol. Energy Mater. Sol. Cells, 2019,194:195-206. doi: 10.1016/j.solmat.2019.01.042

    6. [6]

      Wang C C, Cai M J, Liu Y P, Yang F, Zhang H Q, Liu J S, Li S J. Facile construction of novel organic-inorganic tetra(4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis, and mechanism insight[J]. J. Colloid Interface Sci., 2022,605:727-740. doi: 10.1016/j.jcis.2021.07.137

    7. [7]

      Di L J, Yang H, Xian T, Liu X Q, Chen X J. Photocatalytic and photo-Fenton catalytic degradation activities of Z-scheme Ag2S/BiFeO3 heterojunction composites under visible-light irradiation[J]. Nanomaterials, 2019,9(3)399. doi: 10.3390/nano9030399

    8. [8]

      Hu X J, Wang W X, Xie G Y, Wang H, Tan X F, Jin Q, Zhou D X, Zhao Y L. Ternary assembly of g-C3N4/graphene oxide sheets/BiFeO3 heterojunction with enhanced photoreduction of Cr(Ⅵ) under visible-light irradiation[J]. Chemosphere, 2019,216:733-741. doi: 10.1016/j.chemosphere.2018.10.181

    9. [9]

      Huo H W, Hu X J, Wang H, Li J, Xie G Y, Tan X F, Jin Q, Zhou D X, Li C, Qiu G Q, Liu Y G. Synergy of photocatalysis and adsorption for simultaneous removal of hexavalent chromium and methylene blue by g-C3N4/BiFeO3/carbon nanotubes ternary composites[J]. Int. J. Environ. Res. Public Health, 2019,16(17)3219. doi: 10.3390/ijerph16173219

    10. [10]

      Shang J, Chen H G, Chen T Z, Wang X W, Feng G, Zhu M W, Yang Y X, Jia X S. Photocatalytic degradation of rhodamine B and phenol over BiFeO3/BiOCl nanocomposite[J]. Appl. Phys. A-Mater. Sci. Process., 2019,125(2):1-7.

    11. [11]

      Xie Y Y, Zhang C S, Wang D T, Lu J F, Wang Y H, Wang J, Zhang L Z, Zhang R Q. Catalytic performance of a Bi2O3-Fe2O3 system in soot combustion[J]. New J. Chem., 2019,43(38):15368-15374. doi: 10.1039/C9NJ03419F

    12. [12]

      Yang Q Q, Deng J X, Wang G S, Deng Q S, Zhao J L, Dai Y X, Duan P, Cui M, Kong L, Gao H L, Nie R J, Wang F. The physical properties and microstructure of BiFeO3/YBCO heterostructures[J]. Vacuum, 2019,167:313-318. doi: 10.1016/j.vacuum.2019.06.025

    13. [13]

      Li S J, Shen X F, Liu J S, Zhang L S. Synthesis of Ta3N5/Bi2MoO6 core-shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts[J]. Environ. Sci.-Nano, 2017,4(5):1155-1167. doi: 10.1039/C6EN00706F

    14. [14]

      Bai P J, Li Y T, Wang G, Han J, Wei Y X, Li M W, Mao D, Zeng Y M. Fabrication of Al2O3-coated BiFeO3 particles and fine - grained ceramics with improved electric properties[J]. J. Mater. Sci. - Mater. Electron., 2020,31(23):21723-21731. doi: 10.1007/s10854-020-04685-w

    15. [15]

      Li S J, Wang C C, Cai M J, Yang F, Liu Y P, Chen J L, Zhang P, Li X, Chen X B. Facile fabrication of TaON/Bi2MoO6 core - shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(Ⅵ) reduction[J]. Chem. Eng. J., 2022,428131158. doi: 10.1016/j.cej.2021.131158

    16. [16]

      Guo Y H, Zhou S H, Sun X K, Yuan H L. Synthesis and photocatalytic activity of BiFeO3 and Bi/BiFeO3 cubic microcrystals[J]. J. Am. Ceram. Soc., 2020,103(8):4122-4128. doi: 10.1111/jace.17083

    17. [17]

      Huang Y X, Lin H, Zhang Y H. Synthesis of MIL-101(Fe)/SiO2 composites with improved catalytic activity for reduction of nitroaromatic compounds[J]. J. Solid State Chem., 2019,283121150.

    18. [18]

      Lei Y X, Zhang Y P, Ding W M, Yu L Q, Zhou X P, Wu C M. Preparation and photoelectrochemical properties of BiFeO3/BiOI composites[J]. RSC Adv., 2020,10(45):26658-26663. doi: 10.1039/D0RA02457K

    19. [19]

      Mansingh S, Sultana S, Acharya R, Ghosh M K, Parida K M. Correction to efficient photon conversion via double charge dynamics CeO2-BiFeO3 p-n heterojunction photocatalyst promising toward N2 fixation and phenol-Cr(Ⅵ) detoxification[J]. Inorg. Chem., 2020,59(9)6646. doi: 10.1021/acs.inorgchem.0c00981

    20. [20]

      Margha F H, Radwan E K, Badawy M I, Gad-Allah T A. Bi2O3-BiFeO3 glass - ceramic: Controllable β-/γ-Bi2O3 transformation and application as magnetic solar - driven photocatalyst for water decontamination[J]. ACS Omega, 2020,5(24):14625-14634. doi: 10.1021/acsomega.0c01307

    21. [21]

      Rusly S N A, Ismail I, Matori K A, Abbas Z, Shaari , A H, Ibrahim I R. A study of multiferroic BiFeO3/epoxy resin composite as potential coating materials for microwave absorption[J]. Solid State Phenomena, 2020,307:20-25. doi: 10.4028/www.scientific.net/SSP.307.20

    22. [22]

      Zhang X Y, Wang X, Chai J N, Xue S, Wang R X, Jiang L, Wang J, Zhang Z H, Dionysiou D D. Construction of novel symmetric double Z-scheme BiFeO3/CuBi2O4/BaTiO3 photocatalyst with enhanced solar-light-driven photocatalytic performance for degradation of norfloxacin[J]. Appl. Catal. B-Environ., 2020,272119017. doi: 10.1016/j.apcatb.2020.119017

    23. [23]

      Li H J, Zhuang J, Bokov A A, Zhang N, Zhang J, Zhao J Y, Ren W, Ye Z G. Evolution of relaxor behavior in multiferroic Pb (Fe2/3W1/3)O3-BiFeO3 solid solution of complex perovskite structure[J]. J. Eur. Ceram. Soc., 2021,41(1):310-318. doi: 10.1016/j.jeurceramsoc.2020.07.068

    24. [24]

      Su G, Liu L H, Liu X, Zhan L X, Xue J R, Tang A P. Magnetic Fe3O4@SiO2@BiFeO3/rGO composite for the enhanced visible - light catalytic degradation activity of organic pollutants[J]. Ceram. Int., 2021,47(4):5374-5387. doi: 10.1016/j.ceramint.2020.10.118

    25. [25]

      Zhu Y, Zhu M, Lv H, Zhao S, Shen X R, Zhang Q Y, Zhu W F, Li B D. Coating BiOCl@g-C3N4 nanocomposite with a metal organic framework: Enhanced visible light photocatalytic activities[J]. J Solid State Chem., 2020,292121641. doi: 10.1016/j.jssc.2020.121641

    26. [26]

      Kadi M W, Mohamed R M, Ismail A A. Facile synthesis of mesoporous BiFeO3/graphene nanocomposites as highly photoactive under visible light[J]. Opt. Mater., 2020,104109842. doi: 10.1016/j.optmat.2020.109842

    27. [27]

      Shi Y H, Li J S, Wan D J, Huang J H, Liu Y D. Peroxymonosulfate-enhanced photocatalysis by carbonyl - modified g-C3N4 for effective degradation of the tetracycline hydrochloride[J]. Sci. Total Environ., 2020,749142313. doi: 10.1016/j.scitotenv.2020.142313

    28. [28]

      Liu N, Tang M Q, Jing C W, Huang W Y, Tao P, Zhang X D, Lei J Q, Tang L. Synthesis of highly efficient Co3O4 catalysts by heat treatment ZIF-67 for CO oxidation[J]. J. Sol-Gel Sci. Technol., 2018,88:163-171. doi: 10.1007/s10971-018-4784-x

    29. [29]

      Li S J, Wang C C, Liu Y P, Xue B, Jiang W, Liu Y, Mo L Y, Chen X B. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism[J]. Chem. Eng. J., 2021,415128991. doi: 10.1016/j.cej.2021.128991

    30. [30]

      Duan F, Ma Y, Lv P, Sheng J L, Zhu H, Du M L, Chen X, Chen M Q. Oxygen vacancy - enriched Bi2O3/BiFeO3 p-n heterojunction nanofibers with highly efficient photocatalytic activity under visible light irradiation[J]. Appl. Surf. Sci., 2021,562150171. doi: 10.1016/j.apsusc.2021.150171

    31. [31]

      Liao X L, Li T T, Ren H T, Mao Z Y, Zhang X F, Lin J H. Enhanced photocatalytic performance through the ferroelectric synergistic effect of p-n heterojunction BiFeO3/TiO2 under visible-light irradiation[J]. Ceram. Int., 2021,47(8):10786-10795. doi: 10.1016/j.ceramint.2020.12.195

    32. [32]

      Wang T Y, Bai Y C, Si W, Mao W, Gao Y H, Liu S X. Heterogeneous photo-Fenton system of novel ternary Bi2WO6/BiFeO3/g-C3N4 heterojunctions for highly efficient degrading persistent organic pollutants in wastewater[J]. J. Photochem. Photobiol. A-Chem., 2021,404112856. doi: 10.1016/j.jphotochem.2020.112856

    33. [33]

      Balta Z, Simsek E B. Uncovering the systematical charge separation effect of boron nitride quantum dots on photocatalytic performance of BiFeO3 perovskite towards degradation of tetracycline antibiotic[J]. J. Environ. Chem. Eng., 2021,9(6)106567. doi: 10.1016/j.jece.2021.106567

    34. [34]

      Balta Z, Simsek E B. Understanding the structural and photocatalytic effects of incorporation of hexagonal boron nitride whiskers into ferrite type perovskites (BiFeO3, MnFeO3) for effective removal of pharmaceuticals from real wastewater[J]. J. Alloy. Compd., 2022,898162897. doi: 10.1016/j.jallcom.2021.162897

    35. [35]

      Zhou J B, Jiang L D, Chen D, Liang J H, Qin L S, Bai L Q, Sun X G, Huang Y X. Facile synthesis of Er-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic degradation of tetracycline hydrochloride[J]. J. Sol-Gel Sci. Technol., 2019,90(3):535-546. doi: 10.1007/s10971-019-04932-5

    36. [36]

      Zhu Y, Han Z G, Zhao S Y, Zhang Q Y, Shen X R, Lv H, Liu J, Li B D. In-situ growth of Ag/AgBr nanoparticles on a metal organic framework with enhanced visible light photocatalytic performance[J]. Mater. Sci. Semicond. Process, 2021,133105973. doi: 10.1016/j.mssp.2021.105973

    37. [37]

      Zhu M, Chen H M, Dai Y, Wu X Y, Han Z G, Zhu Y. Novel n-p-n heterojunction of AgI/BiOI/UiO-66 composites with boosting visible light photocatalytic activities[J]. Appl. Organomet. Chem., 2021,35(5)e6186.

    38. [38]

      Wang H Y, Fu W Y, Chen Y W, Xue F Y, Shan G Y. ZIF-67-derived Co3O4 hollow nanocage with efficient peroxidase mimicking characteristic for sensitive colorimetric biosensing of dopamine[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2021,246119006. doi: 10.1016/j.saa.2020.119006

    39. [39]

      Hu L X, Hu H M, Lu W C, Lu Y S, Wang S Q. Novel composite Bi-FeO3/ZrO2 and its high photocatalytic performance under white LED visible-light irradiation[J]. Mater. Res. Bull., 2019,120110605. doi: 10.1016/j.materresbull.2019.110605

    40. [40]

      Li Z D, Cheng L, Zhang K, Wang Z H. Enhanced photocatalytic performance by Y-doped BiFeO3 particles derived from MOFs precursor based on band gap reduction and oxygen vacancies[J]. Appl. Organomet. Chem., 2021,35(3)6113.

    41. [41]

      Li S J, Wang C C, Liu Y P, Cai M J, Wang Y N, Guo Y, Zhao W, Wang Z H, Chen X B. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight, and toxicity assessment[J]. Chem. Eng. J., 2022,429132519. doi: 10.1016/j.cej.2021.132519

    42. [42]

      Bai Y, Ye L Q, Chen T, Wang L, Shi X, Zhang X, Chen D. Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets[J]. ACS Appl. Mater. Interfaces, 2016,8(41):27661-27668. doi: 10.1021/acsami.6b08129

    43. [43]

      Chao X J, Yang Z P, Kang C, Gu R. Effect of BiFeO3 addition on Bi2O3-ZnO-Nb2O5 based ceramics[J]. Curr. Appl. Phys., 2010,10(1):26-30. doi: 10.1016/j.cap.2009.04.007

    44. [44]

      Zhu Y, Wang Y M, Liu P, Xia C K, Wu Y L, Lu X Q, Xie J M. Two chelating-amino-functionalized lanthanide metal-organic frameworks for adsorption and catalysis[J]. Dalton Trans., 2015,44(4):1955-1961. doi: 10.1039/C4DT02048K

    45. [45]

      Li Z D, Zhang S L, Xu R C, Zhang Q W, Wang Z H, Fu C L. Photocatalytic performance of BiFeO3 based on MOFs precursor[J]. Appl. Organomet. Chem., 2019,33(10)e5105.

    46. [46]

      Li S J, Chen J L, Hu S W, Wang H L, Jiang W, Chen X B. Facile construction of novel Bi2WO6/Ta3 N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants[J]. Chem. Eng. J., 2020,40212616.

    47. [47]

      Lam S M, Sin J C, Mohamed A R. A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: A mini review[J]. Mater. Res. Bull., 2017,90:15-30. doi: 10.1016/j.materresbull.2016.12.052

    48. [48]

      Li S J, Wang C C, Liu Y P, Xue B, Chen J L, Wang H W, Liu H. Facile preparation of a novel Bi2WO6/calcined mussel shell composite photocatalyst with enhanced photocatalytic performance[J]. Catalysts, 2020,10(10)1166. doi: 10.3390/catal10101166

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    4. [4]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    13. [13]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    14. [14]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    17. [17]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    18. [18]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    19. [19]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    20. [20]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

Metrics
  • PDF Downloads(3)
  • Abstract views(829)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return