Citation: Chun-Shui WANG, Yu-Ying BAI, Xing-Xing LIU, Jia-Hao LI, Xiang-Feng CHU, Shi-Ming LIANG. Preparation and gas-sensing properties of WS2/CuGa2O4 composite materials[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1519-1526. doi: 10.11862/CJIC.2023.094 shu

Preparation and gas-sensing properties of WS2/CuGa2O4 composite materials

Figures(10)

  • CuGa2O4 nanomaterials were synthesized by the co-precipitation method, and a series of WS2/CuGa2O4 composite materials were prepared by the hydrothermal method. The crystal phase, morphology, and chemical state of the as-prepared materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and so on. The effect of the doped amount of WS2 on the gas-sensing sensitivity of CuGa2O4 materials to ethanol gas was studied. The results showed that when the mass ratio of WS2 to CuGa2O4 was 1%, the response of this gas sensor to 100 μL·L-1 ethanol gas at room temperature was 345.3, and the response and recovery times were 184 and 69 s, the detection limit reached 0.1 μL·L-1.
  • 加载中
    1. [1]

      Alzeer J, Hadeed K A. Ethanol and its halal status in food industries[J]. Trends Food Sci. Technol., 2016,58:14-20. doi: 10.1016/j.tifs.2016.10.018

    2. [2]

      Antolini E. Catalysts for direct ethanol fuel cells[J]. J. Power Sources, 2007,170(1):1-12. doi: 10.1016/j.jpowsour.2007.04.009

    3. [3]

      Choi S, Bonyani M, Sun G, Lee J K, Hyun S K, Lee C. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors[J]. Appl. Surf. Sci., 2018,432:241-249. doi: 10.1016/j.apsusc.2017.01.245

    4. [4]

      Lorraine F H. Relevance of the developmental toxicity of ethanol in the occupational setting: A review[J]. J. Appl. Toxicol., 2003,23:289-299. doi: 10.1002/jat.937

    5. [5]

      Bai J L, Luo Y B, An B X, Wang Q, Cheng X. Ni/Au bimetal decorated In2O3 nanotubes for ultra-sensitive ethanol detection[J]. Sens. Actuators B-Chem., 2020,311127938. doi: 10.1016/j.snb.2020.127938

    6. [6]

      HUANG Z H, HUANG S W, JIANG Z J. Determination of free formaldehyde in coating and adhesive by gas chromatography[J]. China Adhesives, 2019,28(12):51-55. doi: 10.13416/j.ca.2019.12.013

    7. [7]

      Xu Z Q, Chen J H, Hu L L, Tan Y, Liu S H, Yin J. Recent advances in formaldehyde-responsive fluorescent probes[J]. Chin. Chem. Lett., 2017,28(10):1935-1942. doi: 10.1016/j.cclet.2017.07.018

    8. [8]

      LI X B, LI L, RUAN C Q. Improvement of determining formaldehyde in food by 2, 4-dinitrophenylhydrazine colorimetric method[J]. China Food Additives, 2016(8):205-209.  

    9. [9]

      FENG X, SUN F Y, SUN L Y. Ethanol gas sensor based on WO3 nanomaterials[J]. Journal of Natural Science of Heilongjiang University, 2023,39(6):1-6.  

    10. [10]

      Tao Y R, Gao Q X, Di J L, Wu X C. Gas sensors based on α-Fe2O3 nanorods, nanotubes and nanocubes[J]. J. Nanosci. Nanotechnol., 2013,13(8):5654-5660. doi: 10.1166/jnn.2013.7559

    11. [11]

      Meng F L, Yang Z Q, Yuan Z Y, Zhang H T, Zhu H M. Hydrothermal synthesis of CuO/rGO nanosheets for enhanced gas sensing properties of ethanol[J]. Ceram. Int., 2023,49(4):5595-5603. doi: 10.1016/j.ceramint.2022.10.174

    12. [12]

      Hsueh T J, Hsu C L, Chang S J, Chen I C. Laterally grown ZnO nanowire ethanol gas sensors[J]. Sens. Actuators B-Chem., 2007,126:473-477. doi: 10.1016/j.snb.2007.03.034

    13. [13]

      Qiang Z, Ma S Y, Jiao H Y, Wang T T, Jiang X H, Jin W X, Yang H M, Chen H. Highly sensitive and selective ethanol sensors using porous SnO2 hollow spheres[J]. Ceram. Int., 2016,42:18983-18990. doi: 10.1016/j.ceramint.2016.09.053

    14. [14]

      Zhao C H, Gong H M, Niu G Q, Wang F. Electrospun Ca-doped In2O3 nanotubes for ethanol detection with enhanced sensitivity and selectivity[J]. Sens. Actuators B-Chem., 2019,299126946. doi: 10.1016/j.snb.2019.126946

    15. [15]

      He L F, Gao C P, Yang L, Zhang K, Chu X F, Liang S M, Zeng D W. Facile synthesis of MgGa2O4/graphene composites for room temperature acetic acid gas sensing[J]. Sens. Actuators B-Chem., 2020,306127453. doi: 10.1016/j.snb.2019.127453

    16. [16]

      GAO C P, WANG Y, CHU X F. Preparation and gas-sensing properties of CuGa2O4 by co-precipitation method[J]. Chinese J. Inorg. Chem., 2019,35(1):59-64.  

    17. [17]

      Li W, Ding C, Li J Z, Ren Q Y, Bai G, Xu J. Sensing mechanism of Sb, S doped SnO2 (110) surface for CO[J]. Appl. Surf. Sci., 2020,502144140. doi: 10.1016/j.apsusc.2019.144140

    18. [18]

      Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D transition metal dichalcogenides[J]. Nat. Rev. Mater., 2017,2:1-15.

    19. [19]

      Sang Y H, Zhao Z H, Zhao M W, Hao P, Leng Y H, Liu H. From UV to near-infrared, WS2 nanosheet: A novel photocatalyst for full solar light spectrum photodegradation[J]. Adv. Mater., 2014,27:363-369.

    20. [20]

      Wang H T, Yuan H T, Hong S S, Li Y B, Cui Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides[J]. Chem. Soc. Rev., 2015,44:3664-3680.

    21. [21]

      Liu D, Tang Z L, Zhang Z T. Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets[J]. Sens. Actuators B-Chem., 2020,303127114. doi: 10.1016/j.snb.2019.127114

    22. [22]

      Sun Y J, Wang B X, Liu S W, Zhao Z T, Zhang W L, Zhang W D, Suematsu K, Hu J. WS2 quantum dots modified In2O3 hollow hexagonal prisms for conductometric NO2 sensing at room-temperature[J]. Sens. Actuators B-Chem., 2023,380133341. doi: 10.1016/j.snb.2023.133341

    23. [23]

      Qin Z Y, Chao O Y, Zhang J, Wan L, Wang S M, Xie C S, Zeng D W. 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature[J]. Sens. Actuators B-Chem., 2017,253:1034-1042. doi: 10.1016/j.snb.2017.07.052

    24. [24]

      Qin F J, Gao J, Jiang L, Fan J H, Sun B H, Fan Y H, Shi K Y. Biomorphic WO3@WS2 heterojunction composites for enhanced NO2 gas-sensing performance at room temperature[J]. Appl. Surf. Sci., 2023,615156338. doi: 10.1016/j.apsusc.2023.156338

    25. [25]

      Liang Z Q, Yang S R, Wang X Y, Cui H Z, Wang X Z, Tian J. The metallic 1T phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes[J]. Appl. Catal. B-Environ., 2020,274119114. doi: 10.1016/j.apcatb.2020.119114

    26. [26]

      Zardkhoshoui A M, Davarani S S H. Designing a flexible all-solid-state supercapacitor based on CuGa2O4 and FeP-rGO electrodes[J]. J. Alloy. Compd., 2019,773:527-536. doi: 10.1016/j.jallcom.2018.09.135

    27. [27]

      Wang Y L, Liu J, Cui X B, Gao Y, Ma J, Sun Y F, Sun P, Liu F M, Liang X S, Zhang T, Lu G Y. NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3[J]. Sens. Actuators B-Chem., 2017,238:473-481. doi: 10.1016/j.snb.2016.07.085

    28. [28]

      Gao L P, Ren F M, Cheng Z X, Zhang Y, Xiang Q, Xu J Q. Porous corundum-type In2O3 nanoflowers: Controllable synthesis, enhanced ethanol-sensing properties and response mechanism[J]. CrystEngComm, 2015,17(17):3268-3276. doi: 10.1039/C5CE00279F

    29. [29]

      Dong C J, Liu X, Xiao X C, Chen G, Wang Y D, Djerdj I. Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response[J]. J. Mater. Chem. A, 2014,2(47):20089-20095. doi: 10.1039/C4TA04251D

    30. [30]

      Ma Y T, Ma S Y, Tang J, Wu Z G, Shi J, Zhao Y, Wang Y, Pei S T. Constructed heterostructured SnS@MoO3 hollow nanotubes and detected sensing properties towards TEA[J]. Vacuum, 2021,184109939. doi: 10.1016/j.vacuum.2020.109939

    31. [31]

      Xie K R, Wang Y T, Zhang K L, Zhao R H, Chai Z Q, Du J P, Li J P. Controllable band structure of ZnO/g-C3N4 aggregation to enhance gas sensing for the dimethylamine detection[J]. Sens. Actuators Rep., 2022,4100084. doi: 10.1016/j.snr.2022.100084

    32. [32]

      TAO Y R, ZHANG Y L, WEN L L, WU X C. Synthesis, characterization of gas-sensing properties of sodium titanate nanobelt[J]. Chinese J. Inorg. Chem., 2008,24(10):1570-1575. doi: 10.3321/j.issn:1001-4861.2008.10.004

    33. [33]

      Hu J J, Yuan Q M, Zhang C, Zhang J, He L F, Gao H L, Jin L, Fan L Y, Zhang K, Chu X F, Meng F L. A facile cotton biotemplate to fabricate porous ZnFe2O4 sheets for acetone gas sensing application[J]. Sens. Actuators B-Chem., 2022,371132587. doi: 10.1016/j.snb.2022.132587

    34. [34]

      Qin Z Y, Ouyang C, Zhang J, Wan L, Wang S M, Xie C S, Zeng D W. 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature[J]. Sens. Actuators B-Chem., 2017,253:1034-1042. doi: 10.1016/j.snb.2017.07.052

    35. [35]

      Wang H B, Yang J, Lu S B, Liu C Y, Zhang Z X. Band structure calculation and crystal field induced electronic properties illustration for spinel CuGa2O4*[J]. Comput. Mater. Sci., 2022,212111579. doi: 10.1016/j.commatsci.2022.111579

  • 加载中
    1. [1]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    15. [15]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    16. [16]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    17. [17]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    18. [18]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    19. [19]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(4)
  • Abstract views(833)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return