Citation: He-Lin WANG, Zhi-Liang GUO, Bo-Zhi LIU, Zhuang-Ze WU, Li-Xu LEI. Less solvent solid-state consecutive coordination reaction of copper chloride[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1536-1544. doi: 10.11862/CJIC.2023.093 shu

Less solvent solid-state consecutive coordination reaction of copper chloride

  • Corresponding author: Li-Xu LEI, lixu.lei@seu.edu.cn
  • Received Date: 16 January 2023
    Revised Date: 23 April 2023

Figures(6)

  • The less solvent solid-state reaction (LSR) between CuCl2·2H2O and NH4Cl in a little water produced only (NH4)2[CuCl4(H2O)2] since NH4[CuCl3] was not stable in water; however, in a little absolute ethanol at 60 ℃, the LSR produced NH4[CuCl3], or (NH4)2[CuCl4] according to the mixed stoichiometric ratio. The LSR of CuCl2 and NH4Cl in a 1∶2 molar ratio proceeds in two steps: the formation of NH4[CuCl3] at an early stage and a further reaction between NH4[CuCl3] and remaining NH4Cl to form the final product (NH4)2[CuCl4]. In contrast, the LSR of CuCl2·2H2O and 2, 2′-bipyridine (bipy) in 1∶1 molar ratio in a little water produced solely [Cu(bipy)Cl2], but the 1∶2 product, [Cu(bipy)2Cl2]·2H2O did appear in its early stage. The reason may be that the structure of the solid CuCl2·2H2O, which is polymerized planer trans-[CuCl2(H2O)2], converts to molecular trans-[CuCl2(H2O)4] in water, and the latter makes the activation energy of successive substitution of two H2O molecules by bipy closer. Thus, bipy rapidly and successively replaces four water molecules in trans-[CuCl2(H2O)4] to form a 1∶2 product. This surprising result indicates that the LSR of [Cu(bipy)2Cl2]·2H2O and CuCl2·2H2O is also spontaneous, and according to thermodynamics, it is possible if the ΔrG of the second reaction is bigger than that of the first one of the consecutive reactions. Therefore, the LSR could also proceed stepwise, which is hard to find in solution reactions.
  • 加载中
    1. [1]

      XIN X Q, ZHENG L M. Solid state reaction at room temperature and low-heating temperature[J]. University Chemistry, 1994,9(6):1-7.  

    2. [2]

      LEI L X, ZHOU Y M. Solvent-free or less-solvent solid state reactions[J]. Prog. Chem, 2020,32(8):1158-1171.  

    3. [3]

      Anastas P, Eghbali N. Green chemistry: Principles and practice[J]. Chem. Soc. Rev., 2010,39(1):301-312. doi: 10.1039/B918763B

    4. [4]

      Ardila-Fierro K J, Hernandez J G. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry[J]. ChemSusChem, 2021,14(10):2145-2162. doi: 10.1002/cssc.202100478

    5. [5]

      Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New tools to navigate the uncharted territory of "impossible" reactions[J]. ChemSusChem, 2022,15(17)e202200362.

    6. [6]

      HAN W K, TIAN L, XU Z L, ZHU W, LI Z H, LI T, GU Z G, LI Z J. Self-sorting of binuclear Schiff-base complexes under solvent-free grinding conditions[J]. Chinese J. Inorg. Chem, 2017,33(4):550-559.  

    7. [7]

      TAN J, LI Z F, YANG X F, LI J, ZHANG T T. Effect of dry and wet environment of ball milling on visible light catalytic performance of sulfur-doped carbon nitride[J]. Chinese J. Inorg. Chem, 2020,36(3):475-484.  

    8. [8]

      WU W J, LI Y T, FENG Q, DING W X. Perovskite dual-function passivator: Room temperature ionic liquid obtained from mechanochemical preparation[J]. Acta Chim. Sin, 2022,80(11):1469-1475.  

    9. [9]

      JIANG H L, LIU C, LEI L X. Ammonium carnallite prepared from a less-solvent solid state reaction[J]. University Chemistry, 2021,36(12)2102008.  

    10. [10]

      Kamyshny A. Solubility of cyclooctasulfur in pure water and sea water at different temperatures[J]. Geochim. Cosmochim. Acta, 2009,73(20):6022-6028. doi: 10.1016/j.gca.2009.07.003

    11. [11]

      Wang H L, Liu C, Jiang H L, Guo Z L, Zheng Y P, Qi Q, Lei L X. A laboratory experiment on preparation of 3PbO·PbSO4·H2O using less solvent solid state reaction for undergraduate students[J]. Educ. Chem. Eng., 2023,43:92-99.

    12. [12]

      Li C X, Lei L X, Xin X Q. Synthesis of M(biN)nCl2 by solid-solid reactions[J]. Chin. Sci. Bull., 1994(4):349-350.

    13. [13]

      Lei L X, Xin X Q. Stepwise reaction of CuCl2·2H2O with 2, 2'-bipyridyl in the solid state[J]. J. Solid State Chem., 1995,119(2):299-303.

    14. [14]

      Lei L X, Xin X Q. Solid state synthesis of a new compound Cu(HQ)Cl2 and its formation reaction[J]. Thermochim. Acta, 1996,273:61-67.

    15. [15]

      Lei L X, Wang Z, Xin X Q. The solid state reaction of CuCl2·2H2O and 8-hydroxylquinoline[J]. Thermochim. Acta, 1997,297(1/2):193-197.

    16. [16]

      Lei L X, Jing S, Walton R I, Xin X Q, O'Hare D. Investigation of the solid state reaction of FeSO4·7H2O with 1, 10-phenanthroline[J]. J. Chem. Soc.-Dalton Trans., 2002,18(18):3477-3481.

    17. [17]

      Kinyon J S, Clark R, Dalal N S, Choi E S. Ferroelectricity in the gapless quantum antiferromagnet NH4CuCl3[J]. Phys. Rev. B, 2015,92(14)144103.

    18. [18]

      Kinyon J S, Dalal N S, Clark R J, Zhou H D, Choi K Y. Closing the spin gap of (NH4)xK1-xCuCl3 through chemical substitution[J]. Phys. Rev. Mater., 2021,5(5)054413.

    19. [19]

      Shiramura W, Takatsu K, Kurniawan B, Tanaka H, Uekusa H, Ohashi Y, Takizawa K, Mitamura H, Goto T. Magnetization plateaus in NH4CuCl3[J]. J. Phys. Soc. Jpn.,, 1998,67(5):1548-1551.

    20. [20]

      Canhota F P, Salomã o G C, Carvalho N M F, Antunes O A C. Cyclohexane oxidation catalyzed by 2, 2'-bipyridyl Cu? complexes[J]. Catal. Commun., 2008,9(1):182-185.

    21. [21]

      Sirdeshmukh D B, Deshpand V T. X-ray measurement of thermal expansion of ammonium chloride[J]. Acta Crystallogr. Sect. A, 1970,A26(2)295.

    22. [22]

      Brownstein S, Han N F, Gabe E, Lepage Y. A redetermination of the crystal-structure of cupric chloride dihydrate[J]. Z. Kristall., 1989,189(1/2):13-15.

    23. [23]

      Bhakaytamhane S N, Sequeira A, Chidambaram R. Disorder of ammonium ions in diammonium tetrachlorocuprate dihydrate, (NH4)2CuCl4·2H2O: A high-precision neutron diffraction study[J]. Acta Crystallogr. Sect. B, 1980,B36(12):2925-2929.

    24. [24]

      Burns P C, Hawthorne F C. Tolbachite, CuCl2, the first example of Cu2+ octahedrally coordinated by Cl-[J]. Am. Miner., 1993,78(1/2):187-189.

    25. [25]

      O'Bannon G, Willet R D. A redetermination of the crystal structure of NH4CuCl3 and a magnetic study of NH4CuX3 (X=Cl, Br)[J]. Inorg. Chim. Acta, 1981,53:L131-L132.

    26. [26]

      Willett R D. Crystal structure of (NH4)2CuCl4[J]. J. Chem. Phys., 1964,41(8):2243-2244.

    27. [27]

      Louis B, Detoni C, Carvalho N M F, Duarte C D, Antunes O A C. Cu? bipyridine and phenanthroline complexes: Tailor-made catalysts for the selective oxidation of tetralin[J]. Appl. Catal. A-Gen., 2009,360(2):218-225.

    28. [28]

      Engberg Å, Staffansson L I. An X-Ray Refinement of the Crystal Structure of Copper? chloride dihydrate[J]. Acta Chem. Scand., 1970,24(10):3510-3526.

    29. [29]

      Medeiros F E O, Araujo B S, Ayala A P. Raman spectroscopy investigation of the thermal stability of the multiferroic CuCl2 and its hydrated form[J]. Vib. Spectrosc., 2018,99:1-6.

    30. [30]

      Fronczek F R, Collins S N, Chan J Y. Refinement of ferrous sulfate heptahydrate (melanterite) with low-temperature CCD data[J]. Acta Crystallogr. Sect. E., 2001,57(4):i26-i27.

    31. [31]

      Speight J G. Lange's Handbook of Chemistry. New York: McGraw-Hill, 2005: 363-379

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    7. [7]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    8. [8]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    12. [12]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    13. [13]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    14. [14]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    18. [18]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    19. [19]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    20. [20]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

Metrics
  • PDF Downloads(0)
  • Abstract views(705)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return