Citation: Kai ZHU, Yuan LIANG, Hua-Chun LAN, Xiao-Qiang AN, Jian-Qiao LIU. Self-driven water purification and simultaneous hydrogen generation by all-nanowire photocatalytic fuel cell with enhanced mass and electron transfer[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1429-1439. doi: 10.11862/CJIC.2023.090 shu

Self-driven water purification and simultaneous hydrogen generation by all-nanowire photocatalytic fuel cell with enhanced mass and electron transfer

  • Corresponding author: Xiao-Qiang AN, xqan@tsinghua.edu.cn
  • Received Date: 24 October 2022
    Revised Date: 11 May 2023

Figures(6)

  • This paper constructed an all-nanowire photocatalytic fuel cell with enhanced mass and electron transfer by integrating TiO2 nanowire array photoanodes on three-dimensional (3D) hierarchical carbon cloth and platinized Si nanowire array photocathodes. Under light illumination, the potholes generated at the microfluidic photoanodes effectively oxidize various harmful contaminants, which significantly enhanced the reduction of water by photoelectrons for hydrogen gas production. Compared with conventional planar photoelectrodes, the all-nanowire photocatalytic fuel cell can efficiently degrade simulated dye wastewater and simultaneously generate hydrogen new energy without requiring an external bias voltage.
  • 加载中
    1. [1]

      Sun J, Zeng L, Jiang H R, Chao C Y H, Zhao T S. Formation of electrodes by self-assembling porous carbon fibers into bundles for vanadium redox flow batteries[J]. J. Power Sources, 2018,405:106-113. doi: 10.1016/j.jpowsour.2018.10.035

    2. [2]

      Suliman M H, Adam A, Siddiqui M N, Yamani Z H, Qamar M. The impact of microstructural features of carbon supports on the electrocatalytic hydrogen evolution reaction[J]. Catal. Sci. Technol., 2019,9(6):1497-1503. doi: 10.1039/C8CY02549E

    3. [3]

      Gu Z A, Zhang Z Y, Ni N, Hu C Z, Qu J H. Simultaneous phenol removal and resource recovery from phenolic wastewater by electrocatalytic hydrogenation[J]. Environ. Sci. Technol., 2022,56(7):4356-4366. doi: 10.1021/acs.est.1c07457

    4. [4]

      Xie S, Ouyang K. Degradation of refractory organic compounds by photocatalytic fuel cell with solar responsive WO3/FTO photoanode and air-breathing cathode[J]. J. Colloid Interface Sci., 2017,500:220-227. doi: 10.1016/j.jcis.2017.04.002

    5. [5]

      Zhang J J, Wang T, Chang X X, Li A, Gong J L. Fabrication of porous nanoflake BiMOx (M = W, V, and Mo) photoanodes via hydrothermal anion exchange[J]. Chem. Sci., 2016,7(10):6381-6386. doi: 10.1039/C6SC01803C

    6. [6]

      Ma C R, Yan J H, Huang Y C, Wang C X, Yang G W. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion[J]. Sci. Adv., 2018,4(8)eaas9894. doi: 10.1126/sciadv.aas9894

    7. [7]

      Yang W, Prabhakar R R, Tan J, Tilley S D, Moon J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting[J]. Chem. Soc. Rev., 2019,48(19):4979-5015. doi: 10.1039/C8CS00997J

    8. [8]

      Cui W R, Zhang C R, Jiang W, Li F F, Liang R P, Liu J, Qiu J D. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium[J]. Nat. Commun., 2020,11(1)436. doi: 10.1038/s41467-020-14289-x

    9. [9]

      Santara B, Giri P K, Imakita K, Fujii M. Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons[J]. Nanoscale, 2013,5(12):5476-5488. doi: 10.1039/c3nr00799e

    10. [10]

      Yu G, Lieber C M. Assembly and integration of semiconductor nanowires for functional nanosystems[J]. Pure Appl. Chem., 2010,82(12):2295-2314. doi: 10.1351/PAC-CON-10-07-06

    11. [11]

      Liu S, Han C, Tang Z R, Xu Y J. Heterostructured semiconductor nanowire arrays for artificial photosynthesis[J]. Mater. Horizons, 2016,3(4):270-282. doi: 10.1039/C6MH00063K

    12. [12]

      Razzaq A, In S I. TiO2 based nanostructures for photocatalytic CO2 conversion to valuable chemicals[J]. Micromachines, 2019,10(5)326. doi: 10.3390/mi10050326

    13. [13]

      Tétreault N, Horváth E, Moehl T, Brillet J, Smajda R, Bungener S, Cai N, Wang P, Zakeeruddin S M, Forró L, Magrez A, Grätzel M. High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystallsine TiO2 nanowires[J]. ACS Nano, 2010,4(12):7644-7650. doi: 10.1021/nn1024434

    14. [14]

      Guan S D, Fu X L, Zhang Y, Peng Z J. β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency[J]. Chem. Sci., 2018,9(6):1574-1585. doi: 10.1039/C7SC03928J

    15. [15]

      Kim H E, Kim J, Ra E C, Zhang H, Jang Y J, Lee J S. Photoelectrochemical nitrate reduction to ammonia on ordered silicon nanowire array photocathodes[J]. Angew. Chem. Int. Ed., 2022,61(25)e202204117.

    16. [16]

      Hwang Y J, Hahn C, Liu B, Yang P. Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating[J]. ACS Nano, 2012,6(6):5060-5069. doi: 10.1021/nn300679d

    17. [17]

      Gu Z A, An X Q, Liu R P, Xiong L Q, Tang J W, Hu C Z, Liu H J, Qu J H. Interface-modulated nanojunction and microfluidic platform for photoelectrocatalytic chemicals upgrading[J]. Appl. Catal. B-Environ., 2021,282119541. doi: 10.1016/j.apcatb.2020.119541

    18. [18]

      Gu Z A, An X Q, Lan H C, Tian Y, Zhang J X, Liu R P, Liu H J, Qu J H. Microfluidic-enhanced 3-D photoanodes with free interfacial energy barrier for photoelectrochemical applications[J]. Appl. Catal. B-Environ., 2019,244:740-747. doi: 10.1016/j.apcatb.2018.12.009

    19. [19]

      Wu Q P, Zheng Q, Van de Krol R. Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles[J]. J. Phys. Chem. C, 2012,116(12):7219-7226. doi: 10.1021/jp212577g

    20. [20]

      Chandrasekaran S, Vijayakumar S, Nann T, Voelcker N H. Investigation of porous silicon photocathodes for photoelectrochemical hydrogen production[J]. Int. J. Hydrog. Energy, 2016,41(44):19915-19920. doi: 10.1016/j.ijhydene.2016.09.048

    21. [21]

      Chen Q P, Bai J, Li J H, Huang K, Li X J, Zhou B X, Cai W M. Aerated visible-light responsive photocatalytic fuel cell for wastewater treatment with producing sustainable electricity in neutral solution[J]. Chem. Eng. J., 2014,252:89-94. doi: 10.1016/j.cej.2014.04.046

    22. [22]

      Chen Q P, Li J H, Li X J, Huang K, Zhou B X, Shangguan W F. Selfbiasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination[J]. ChemSusChem, 2013,6(7):1276-1281. doi: 10.1002/cssc.201200936

    23. [23]

      Zhang H, Li D, Byun W J, Wang X, Shin T J, Jeong H Y, Han H, Li C, Lee J S. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting[J]. Nat. Commun., 2020,11(1)4622. doi: 10.1038/s41467-020-18484-8

    24. [24]

      Martínez M C N, Cavdar O, Haliński ŁP, Miodyńska M, Parnicka P, Bajorowicz B, Kobylański M, Lewandowski Ł, Zaleska-Medynska A. Hydrogen detection during photocatalytic water splitting: A tutorial[J]. Int. J. Hydrog. Energy, 2022,47(35):15783-15788. doi: 10.1016/j.ijhydene.2022.03.050

    25. [25]

      Sorayyaei S, Raji F, Rahbar-Kelishami A, Ashrafizadeh S N. Combination of electrocoagulation and adsorption processes to remove methyl orange from aqueous solution[J]. Environ. Technol. Innov., 2021,24102018. doi: 10.1016/j.eti.2021.102018

    26. [26]

      Xu D, Ma H L. Degradation of rhodamine B in water by ultrasoundassisted TiO2 photocatalysis[J]. J. Clean Prod., 2021,313127758. doi: 10.1016/j.jclepro.2021.127758

    27. [27]

      Rani M, Rachna , Shanker U. Efficient photocatalytic degradation of Bisphenol A by metal ferrites nanoparticles under sunlight[J]. Environ. Technol. Innov., 2020,19100792. doi: 10.1016/j.eti.2020.100792

    28. [28]

      Haider A J, AL Anbari R H, Kadhim G R, Salame C T. Exploring potential Environmental applications of TiO2 Nanoparticles[J]. Energy Procedia, 2017,119:332-345. doi: 10.1016/j.egypro.2017.07.117

    29. [29]

      Sarkar A, Khan G G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures[J]. Nanoscale, 2019,11(8):3414-3444. doi: 10.1039/C8NR09666J

  • 加载中
    1. [1]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    2. [2]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    3. [3]

      Yueting MaZhiyan FengYuxin DongZhiyong YanHou WangYan Wu . Harnessing the interfacial sulfur-edge and metal-edge sites in ZnIn2S4/MnS heterojunctions boosts charge transfer for photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110922-. doi: 10.1016/j.cclet.2025.110922

    4. [4]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    5. [5]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    6. [6]

      Yuan LiuZhu YinXintuo YangJiajia Cheng . Advances in photocatalytic deracemization of sp3-hybridized chiral centers via hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110521-. doi: 10.1016/j.cclet.2024.110521

    7. [7]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    8. [8]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    9. [9]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    10. [10]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    13. [13]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    14. [14]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    15. [15]

      Manlin LuSheng LiaoJiayu LiZidong YuNingjiu ZhaoZuoti XieShunli ChenLi DangMing-De Li . Face-to-face π-π interactions and electron communication boosting efficient reverse intersystem crossing in through-space charge transfer molecules. Chinese Chemical Letters, 2025, 36(6): 110066-. doi: 10.1016/j.cclet.2024.110066

    16. [16]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    17. [17]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    18. [18]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    19. [19]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    20. [20]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

Metrics
  • PDF Downloads(9)
  • Abstract views(1509)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return