Citation: Hai-Feng YU, Ting FENG, Shao-Juan CHENG, Ya-Hui GAO, Qi XIAO, Fang WANG. Nitrogen-rich doped carbon hollow nanocage structure cooperating with cobalt-nickel sulfide to improve the performance of supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1597-1609. doi: 10.11862/CJIC.2023.088 shu

Nitrogen-rich doped carbon hollow nanocage structure cooperating with cobalt-nickel sulfide to improve the performance of supercapacitors

Figures(9)

  • A novel nitrogen-rich doped carbon hollow nanocage (NC) supported binary metal sulfide nanoparticle (CoNixSy) composite CoNixSy/NC was successfully prepared by a simple pyrolysis-vulcanization two-step method. In this strategy, dimethylglyoxime nickel was used as the nickel source to increase the active site, and the core-shell structure of the precursor ZIF-8@Ni-ZIF-67 provided the possibility for the construction of hollow carbon nanocages. More importantly, this unique hollow structure loaded with binary metal sulfide nanoparticles made the CoNixSy/NC possess more active sites, high conductivity, and structural stability when used as an electrode material, thereby providing a higher specific capacity (629.2 F·g-1 at 1 A·g-1) and excellent cycle stability (93.4% capacity retention after 1 000 cycles at 1 A·g-1). When further assembled into a symmetrical supercapacitor, a specific capacitance of 207.2 F·g-1 can be provided at 1 A·g-1, and the retention rate was 85.36% after 1 000 cycles of stabilization.
  • 加载中
    1. [1]

      Li C, Huang Y, Feng X S, Zhang Z, Gao H, Huang J X. Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries[J]. J. Colloid Interface Sci., 2021,594:1-8. doi: 10.1016/j.jcis.2021.02.128

    2. [2]

      Gayathri S, Arunkumar P, Saha D, Han J H. Composition engineering of ZIF-derived cobalt phosphide/cobalt monoxide heterostructures for high-performance asymmetric supercapacitors[J]. J. Colloid Interface Sci., 2021,588:557-570. doi: 10.1016/j.jcis.2020.11.129

    3. [3]

      Li C, Zhang X, Wang K, Su F Y, Chen C M, Liu F Y, Wu Z S, Ma Y W. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors[J]. J. Energy Chem., 2021,54:352-367. doi: 10.1016/j.jechem.2020.05.058

    4. [4]

      Wu Y L, Guo W, Lian X J, Tian Y M, Wang W G, Li J Y, Wang S. Self-assembled three-dimensional hierarchical CoMoO4 nanosheets on NiCo2O4 for high-performance supercapacitor[J]. J. Alloy. Compd., 2019,793:418-424. doi: 10.1016/j.jallcom.2019.04.189

    5. [5]

      Wen Y X, Liu Y P, Dang S, Tian S H, Li H Q, Wang Z L, He D Y, Wu Z S, Cao G Z, Peng S L. High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors[J]. J. Power Sources, 2019,423:106-114. doi: 10.1016/j.jpowsour.2019.03.045

    6. [6]

      Zhang J T, Zhao X S. On the configuration of supercapacitors for maximizing electrochemical performance[J]. ChemSusChem, 2012,5:818-841. doi: 10.1002/cssc.201100571

    7. [7]

      Robert F. New 'supercapacitor' promises to pack more electrical punch[J]. Science, 2006,313902. doi: 10.1126/science.313.5789.902

    8. [8]

      Miller J R, Burker A. Electrochemical capacitors: Challenges and opportunities for real-world applications[J]. Electrochem. Soc. Interface, 2021,17:53-57.

    9. [9]

      HE Y Z, ZHAO H Q, LIU P, SUI Y W, WEI F X, QI J Q, MENG Q K, REN Y J, ZHUANG D D. Electrodeposition of NiS on CoNi2S4 for flexible solid-state asymmetric supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37:171-179. doi: 10.11862/CJIC.2021.011 

    10. [10]

      CHEN X L, ZHU Z P, WU B X, CHEN S G, ZHOU P, HE H. Design and synthesis of sandwich-like Co9S8/NiTe/Ni composites for high-performance supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(2):295-304.  

    11. [11]

      Gao Y, Zhao L J. Review on recent advances on nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors[J]. Chem. Eng. J., 2022,430132745. doi: 10.1016/j.cej.2021.132745

    12. [12]

      Kang C X, Ma L, Chen Y C, Fu L K, Hu Q, Zhou C B, Liu Q M. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors[J]. Chem. Eng. J., 2022,427131003. doi: 10.1016/j.cej.2021.131003

    13. [13]

      Yang X, Mao J J, Niu H, Wang Q, Zhu K, Ye K, Wang G L, Cao D X, Yan J. NiS2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors[J]. Chem. Eng. J., 2021,406126713. doi: 10.1016/j.cej.2020.126713

    14. [14]

      Dahiya Y, Hariram M, Kumar M, Jain A, Sarkar D. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities[J]. Coord. Chem. Rev., 2022,451214265. doi: 10.1016/j.ccr.2021.214265

    15. [15]

      Dong C F, Liang J W, He Y Y, Li C C, Chen X X, Guo L J, Tian F, Qian Y T, Xu L Q. NiS1.03 hollow spheres and cages as superhigh rate capacity and stable anode materials for half/full sodium-ion batteries[J]. ACS Nano, 2018,12:8277-8287. doi: 10.1021/acsnano.8b03541

    16. [16]

      Shi J H, Li X C, He G H, Zhang L, Li M. Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors[J]. J. Mater. Chem. A, 2015,3:20619-20626. doi: 10.1039/C5TA04464B

    17. [17]

      Wang H F, Zhang K F, Song Y Q, Qiu J, Wu J, Yan L F. MnCo2S4 nanoparticles anchored N and S dual-doped 3D graphene as a prominent electrode for asymmetric supercapacitors[J]. Carbon, 2019,146:420-429. doi: 10.1016/j.carbon.2019.02.035

    18. [18]

      JIANG M H, SHENG L Z, WANG C, JIANG L L, FAN Z J. Graphene film for supercapacitors: Preparation, foundational unit structure and surface regulation[J]. Acta Phys.-Chim. Sin., 2022,38(2)2012085.  

    19. [19]

      WEI F, BI H H, JIAO S, HE X J. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Phys.-Chim. Sin., 2020,36(2)1903043.  

    20. [20]

      Wu D, Xie X B, Ma Y P, Zhang J J, Hou C X, Sun X Q, Yang X Y, Zhang Y P, Kimura H, Du W. Morphology controlled hierarchical NiS/carbon hexahedrons derived from nitrilotriacetic acid-assembly strategy for high-performance hybrid supercapacitors[J]. Chem. Eng. J., 2022,433133673. doi: 10.1016/j.cej.2021.133673

    21. [21]

      Yan Y, Li A R, Lu C X, Zhai T F, Lu S F, Li W M, Zhou W. Double-layered yolk-shell microspheres with NiCo2S4-Ni9S8-C hetero-interfaces as advanced battery-type electrode for hybrid supercapacitors[J]. Chem. Eng. J., 2020,396125316. doi: 10.1016/j.cej.2020.125316

    22. [22]

      Qi J Q, Huang M Y, Ruan C Y, Zhu D D, Zhu L, Wei F X, Sui Y W, Meng Q K. Construction of CoNi2S4 nanocubes interlinked by few-layer Ti3C2Tx MXene with high performance for asymmetric supercapacitors[J]. Rare Met., 2022,41:4116-4126. doi: 10.1007/s12598-022-02167-y

    23. [23]

      Xie L X, Li M J, Zhu P, Xiao X B, Jia Z F, Wei Z Q, Jiang J L. Novel combination of nickel-cobalt sulfide and oxide derived from Ni2CoS4@ZIF-67 for high performance supercapacitor[J]. J. Alloy. Compd., 2022,898162861. doi: 10.1016/j.jallcom.2021.162861

    24. [24]

      Yang Q J, Liu Y, Yan M, Lei Y, Shi W D. MOF-derived hierarchical nanosheet arrays constructed by interconnected core-shell nanoparticles for high-performance asymmetric supercapacitors[J]. Chem. Eng. J., 2019,370:666-676. doi: 10.1016/j.cej.2019.03.239

    25. [25]

      Yang Q J, Liu Y, Deng C Y, Yan M, Shi W D. MOF-derived 3D hierarchical nanoarrays consisting of NiCoZn-S nanosheets coupled with granular NiCo2S4 nanowires for high-performance hybrid supercapacitors[J]. J. Mater. Chem. A, 2019,7:26131-26138. doi: 10.1039/C9TA09692B

    26. [26]

      Qu G M, Zhang X X, Xiang G T, Wei Y R, Yin J M, Wang Z H, Zhang X L, Xu X J. ZIF-67 derived hollow Ni-Co-Se nano-polyhedrons for flexible hybrid supercapacitors with remarkable electrochemical performances[J]. Chin. Chem. Lett., 2020,31:2007-2012. doi: 10.1016/j.cclet.2020.01.040

    27. [27]

      Yang B L, Li B J, Xiang Z H. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction[J]. Nano Res., 2022,16:1338-1361.

    28. [28]

      Wang K B, Li Q Q, Ren Z J, Li C, Chu Y, Wang Z K, Zhang M D, Wu H, Zhang Q C. 2D metal-organic frameworks (MOFs) for high-performance BatCap hybrid devices[J]. Small, 2020,162001987. doi: 10.1002/smll.202001987

    29. [29]

      Feng T, Wang F, Xu Y J, Chang M J, Jinn X J, Zhou Y L, Piao J H, Lei J F. CoP/Ni2P heteronanoparticles integrated with atomic Co/Ni dual sites for enhanced electrocatalytic performance toward hydrogen evolution[J]. Int. J. Hydrog. Energy, 2021,46:8431-8443. doi: 10.1016/j.ijhydene.2020.12.060

    30. [30]

      YU H F, WANG F, FENG T, LIU S B, MA F G, YANG M X, LIANG P J. Preparation of Zn-doped Co9S8 nanomaterials and application for supercapacitor and hydrogen evolution reaction of electrocatalysis[J]. Chinese J. Inorg. Chem., 2020,36:1318-1326. doi: 10.11862/CJIC.2020.147 

    31. [31]

      Wang J M, Huang Y, Han X P, Zhang S, Wang M Y, Yan J, Chen C, Zong M. Construction of hierarchical Co9S8@NiO synergistic microstructure for high-performance asymmetric supercapacitor[J]. J. Colloid Interface Sci., 2021,603:440-449. doi: 10.1016/j.jcis.2021.06.118

    32. [32]

      Wang X Z, Wang S J, Su D C, Xu S G, Cao S K, Xiao Y H. Constructing a p-n heterojunction in 3D urchin-like CoNixSy/g-C3N4 composite microsphere for high performance asymmetric supercapacitors[J]. J. Alloy. Compd., 2022,902163784. doi: 10.1016/j.jallcom.2022.163784

    33. [33]

      Wang C, Sui G Z, Guo D X, Li J L, Zhang L, Li S B, Xin J J, Chai D F, Guo W X. Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction[J]. J. Colloid Interface Sci., 2021,599:577-585. doi: 10.1016/j.jcis.2021.04.118

    34. [34]

      Gong J X, Wang Y R, Wang J H, Liu Y X, Hu C H, Zhou T L, Yu Q L, Yang J X, Dai Y T. Hollow nickel-cobalt sulfide nanospheres cathode hybridized with carbon spheres anode for ultrahigh energy density asymmetric supercapacitors[J]. Int. J. Hydrog. Energy, 2022,47:10056-10068. doi: 10.1016/j.ijhydene.2022.01.083

    35. [35]

      Li H J, Liu M Y, Li Y, Yuan L, Zhang P, Cai Z, Chen H, Zhou J L. ZIF-8@ZIF-67-derived ZnCo2O4@nitrogen-doped carbon/carbon nanotubes wrapped by a carbon layer: A stable oxygen reduction catalyst with a competitive strength in acid media[J]. Mater. Today Energy, 2021,19100574. doi: 10.1016/j.mtener.2020.100574

    36. [36]

      Pan Y, Sun K A, Liu S J, Cao X, Wu K L, Chen Z, Wang Y, Li Y, Liu Y Q, Wang D S, Peng Q, Chen C, Li Y D. Core-shell ZIF-8@ZIF-67 derived CoP nanoparticles-embedded N-doped carbon nanotube hollow polyhedron for efficient over-all water splitting[J]. J. Am. Chem. Soc., 2018,140:2610-2618. doi: 10.1021/jacs.7b12420

    37. [37]

      Tang J, Salunkhe R R, Liu J, Torad N L, Lmura M, Furukawa S, Yamauchi Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon[J]. J. Am. Chem. Soc., 2015,137:1572-1580. doi: 10.1021/ja511539a

    38. [38]

      Chen Y Z, Wang C, Wu Z Y, Xiong Y J, Xu Q, Yu S H, Jiang H L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis[J]. Adv. Mater., 2015,27:5010-5016. doi: 10.1002/adma.201502315

    39. [39]

      Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang C Y, Zhou W, Zhao J, Qiu J. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution[J]. Adv. Mater., 2017,291700874. doi: 10.1002/adma.201700874

    40. [40]

      Wu Z B, Pu X L, Ji X B, Zhu Y R, Jing M J, Chen Q Y, Jiao F P. High energy density asymmetric supercapacitors from mesoporous NiCo2S4 nanosheets[J]. Electrochim. Acta, 2015,174:238-245. doi: 10.1016/j.electacta.2015.06.011

    41. [41]

      Zhang D Y, Gao S Y, Zhang J W, Wang J R, She W N, Wang K J, Xia X, Yang B, Meng X X. Facile solid-phase synthesis of layered NiS/rGO nanocomposite for high-performance hybrid supercapacitor[J]. J. Power Sources, 2021,514230590. doi: 10.1016/j.jpowsour.2021.230590

    42. [42]

      Nandhini S, Muralidharan G. Graphene encapsulated NiS/Ni3S4 mesoporous nanostructure: A superlative high energy supercapacitor device with excellent cycling performance[J]. Electrochim. Acta, 2021,365137367. doi: 10.1016/j.electacta.2020.137367

    43. [43]

      Sambathkumar C, Ranjithkumar R, Arasi S E, Manikandan A, Nallamuthu N, Kumar M K, Arivarrasan A, Devendran P. High-performance nickel sulfide modified electrode material from single-source precursor for energy storage application[J]. J. Mater. Sci.-Mater. Electron., 2021,32:20058-20070. doi: 10.1007/s10854-021-06383-7

    44. [44]

      Wu Y, Tong H, Chen X D, Zhou Y, Wu C Q, Gong D X, Xiao J P, Zhang X G. Preparation of nanosheets of Ni5P2@Ni9S8/CoS1.097 heterostructure for aqueous asymmetric supercapacitors with high electrochemical performance[J]. J. Alloy. Compd., 2022,923166378. doi: 10.1016/j.jallcom.2022.166378

    45. [45]

      Chen L N, Wan J F, Fan L, Wei Y H, Zou J L. Construction of CoNi2S4 hollow cube structures for excellent performance asymmetric supercapacitors[J]. Appl. Surf. Sci., 2021,570151174. doi: 10.1016/j.apsusc.2021.151174

    46. [46]

      Zhu J, Xiang L, Xi D, Zhou Y Z, Yang J. One-step hydrothermal synthesis of flower-like CoS hierarchitectures for application in supercapacitors[J]. Bull. Mater. Sci., 2018,4154. doi: 10.1007/s12034-018-1570-x

    47. [47]

      Peng S, Xu Q, Fan L L, Wei C Z, Bao H F, Xu W L, Xu J. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application[J]. Synth. Met., 2016,222:285-292. doi: 10.1016/j.synthmet.2016.11.002

    48. [48]

      Ji Z Y, Li N, Xie M H, Shen X P, Dai W Y, Liu K, Xu K Q, Zhu G X. High-performance hybrid supercapacitor realized by nitrogen-doped carbon dots modified cobalt sulfide and reduced graphene oxide[J]. Electrochim. Acta, 2020,334135632. doi: 10.1016/j.electacta.2020.135632

    49. [49]

      Wu X Y, Wang C C, Wang Z, Qin Y, Kong Y. Nanostructured Co9S8/polypyrrole hybrids grown on carbon cloth for battery-type supercapacitor electrode[J]. Synth. Met., 2022,286117034. doi: 10.1016/j.synthmet.2022.117034

    50. [50]

      Mao X L, He X, Yang W Y, Liu H, Zhou Y J, Xu J H, Yang Y J. Hierarchical holey Co9S8@S-rGO hybrid electrodes for high-performance asymmetric supercapacitors[J]. Electrochim. Acta, 2019,328135078. doi: 10.1016/j.electacta.2019.135078

    51. [51]

      Gao J S, Zhang Z M, Wang H H, Liu Z M, He Y. Construction of 3D Co/Co9S8 encapsulated by graphite carbon for high performance supercapacitor[J]. J. Electroanal. Chem., 2022,921116670. doi: 10.1016/j.jelechem.2022.116670

    52. [52]

      Sambathkumara C, Nallamuthua N, Kumar M K, Sudhaharb S, Devendran P. Electrochemical exploration of cobalt sulfide nanoparticles synthesis using cobalt diethyldithiocarbamate as single source precursor for hybrid supercapacitor device[J]. J. Alloy. Compd., 2022,920165839. doi: 10.1016/j.jallcom.2022.165839

    53. [53]

      Qiu L R, Yang W S, Zhao Q, Lu S S, Wang X H, Zhou M, Tao B F, Xie Q, Ruan Y J. Electrochemical exploration of cobalt sulfide nanoparticles synthesis using cobalt diethyldithiocarbamate as single source precursor for hybrid supercapacitor device[J]. ACS Appl. Nano Mater., 2022,5:6192-6200. doi: 10.1021/acsanm.2c00142

    54. [54]

      Ansari S A, Kotb H M, Ahmad M M. Wrinkle-shaped nickel sulfide grown on three-dimensional nickel foam: A binder-free electrode designed for high-performance electrochemical supercapacitor applications[J]. Crystals, 2022,12757. doi: 10.3390/cryst12060757

    55. [55]

      Zhang Y P, Shen Y H, Xie X B, Du W, Kang L T, Wang Y, Sun X Q, Li Z H, Wang B. One-step synthesis of the reduced graphene oxide@ NiO composites for supercapacitor electrodes by electrode-assisted plasma electrolysis[J]. Mater. Des., 2020,196109111. doi: 10.1016/j.matdes.2020.109111

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    5. [5]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    8. [8]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    9. [9]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    10. [10]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    11. [11]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    12. [12]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    13. [13]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    14. [14]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    15. [15]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    18. [18]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    19. [19]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    20. [20]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

Metrics
  • PDF Downloads(2)
  • Abstract views(733)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return