Citation: Gao-Bin ZHANG, Qi-Han JI, Fang-Jie CHEN, Jian-Li YAN, Yu-Jie YANG, Jia-Le CHEN. Design, synthesis, and application of triphenylamine-based organoboron complexes with dual-state emission property[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1545-1552. doi: 10.11862/CJIC.2023.087 shu

Design, synthesis, and application of triphenylamine-based organoboron complexes with dual-state emission property

  • Corresponding author: Gao-Bin ZHANG, gbzhang@hpu.edu.cn
  • Received Date: 14 January 2023
    Revised Date: 23 March 2023

Figures(8)

  • A novel tri-branched structure organoboron complex based on triphenylamine (TPAB) was designed and synthesized by Suzuki coupling reaction, condensation reaction, and complexation reaction using tris(4-bromophenyl)amine, 4-aminophenyl boronic acid pinacol ester, 4-(diethylamino)salicylaldehyde and boron trifluoride etherate. The structures of the compounds were characterized by 1H and 13C NMR. The photophysical properties of TPAB in solution and solid state were investigated by UV-Vis absorption and fluorescence spectra. TPAB was a dual-state emission active compound that showed strong fluorescence in both solution and solid state. The absorption peak of TPAB in tetrahydrofuran solution was located at 417 nm and the emission peak was located at 548 nm with a fluorescence quantum yield of 40.49% and a fluorescence lifetime of 1.72 ns. The fluorescence emission peak of the TPAB solid was located at 582 nm with a fluorescence quantum yield of 11.43% and a fluorescence lifetime of 0.72 ns. In addition, the fluorescence property of the compound was stable and was not affected by pH, metal ions, amino acids, and pressure. Based on the excellent fluorescence property, TPAB was applied for cell imaging that performed bright fluorescence in HepG2 cells under one- and two-photon excitation.
  • 加载中
    1. [1]

      Zhang H, Liu X, Gong Y, Yu T, Zhao Y. Synthesis and characterization of SFX-based coumarin derivatives for OLEDs[J]. Dyes Pigm., 2021,185108969. doi: 10.1016/j.dyepig.2020.108969

    2. [2]

      TANG Z Y, GUO H Q, XIAO J, CHEN Z J, XIAO L X. Recent advances on electronic transport materials in OLEDs[J]. Chin. J. Lumin., 2023,44(1):26-36.  

    3. [3]

      Nie Y X, Wang P L, Liang Z H, Ma Q, Su X G. Rational fabrication of a smart electrochemiluminescent sensor: Synergistic effect of a self- luminous Faraday cage and biomimetic magnetic vesicles[J]. Anal. Chem., 2021,93(20):7508-7515. doi: 10.1021/acs.analchem.1c00814

    4. [4]

      Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi M R, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale metal-organic frameworks: recent developments in synthesis, modifications and bioimaging applications[J]. Chemosphere, 2021,281130717. doi: 10.1016/j.chemosphere.2021.130717

    5. [5]

      Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chem. Commun., 2001(18):1740-1741. doi: 10.1039/b105159h

    6. [6]

      HAN P B, XU H, AN Z F, CAI Z Y, CAI Z X, CHAO H, CHEN B, CHEN M, CHEN Y, CHI Z G, DAI S T, DING D, DONG Y P, GAO Z Y, GUAN W J, HE Z K, HU J J, HU R, HU Y X, HUANG Q Y, KANG M M, LI D X, LI J S, LI S Z, LI W L, LI Z, LIN X L, LIU H Y, LIU P Y, LOU X D, LV C, MA D G, OU H L, OUYANG J, PENG Q, QIAN J, QIN A J, QU J M, SHI J B, SHUAI Z G, SUN L H, TIAN R, TIAN W J, TONG B, WANG H L, WANG D, WANG H, WANG T, WANG X, WANG Y C, WU S Z, XIA F, XIE Y J, XIONG K, XU B, YAN D P, YANG H B, YANG Q Z, YANG Z Y, YUAN L Z, YUAN W Z, ZANG S Q, ZENG F, ZENG J J, ZENG Z, ZHANG G Q, ZHANG X Y, ZHANG X P, ZHANG Y, ZHANG Y F, ZHANG Z J, ZHAO J, ZHAO Z, ZHAO Z H, ZHAO Z J, TANG B Z. Aggregation-induced emission[J]. Prog. Chem., 2022,34(1):1-130.  

    7. [7]

      Zhao Z, Zhang H K, Lam J W Y, Tang B Z. Aggregation-induced emission: new vistas at the aggregate level[J]. Angew. Chem. Int. Ed., 2020,59:9888-9907. doi: 10.1002/anie.201916729

    8. [8]

      GUI Y X, CHEN K Y, LUO W S, TAN Y H, YAN D Y, WANG D, TANG B Z. Near-infrared-Ⅱ AIE probes for biomedical applications[J]. Chin. J. Lumin, 2023,44(2):356-373.  

    9. [9]

      Belmonte-Vázquez J L, Amador-Sánchez Y A, Rodríguez-Cortés L A, Rodríguez-Molina B. Dual-state emission (DSE) in organic fluorophores: design and applications[J]. Chem. Mater, 2021,33(18):7160-7184. doi: 10.1021/acs.chemmater.1c02460

    10. [10]

      Yin Y N, Ding A X, Yang L M, Kong L, Yang J X. Fusing rigid planar units to engineer twisting molecules as dual-state emitters[J]. Mater. Chem. Front., 2022,6(10):1261-1268. doi: 10.1039/D2QM00067A

    11. [11]

      Zhang H Y, Yang H Y, Zhang M, Lin H, Tao S L, Zheng C J, Zhang X H. A novel orange-red thermally activated delayed fluorescence emitter with high molecular rigidity and planarity realizing 32.5% external quantum efficiency in organic light-emitting diodes[J]. Mater. Horiz., 2022,9(9):2425-2432. doi: 10.1039/D2MH00639A

    12. [12]

      Nijegorodov N, Luhanga P V C, Nkoma J S, Winkoun D P. The influence of planarity, rigidity and internal heavy atom upon fluorescence parameters and the intersystem crossing rate constant in molecules with the biphenyl basis[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2006,64(1):1-5. doi: 10.1016/j.saa.2005.06.032

    13. [13]

      Li H K, Li B S, Tang B Z. Molecular design, circularly polarized luminescence, and helical self-assembly of chiral aggregation- induced emission molecules[J]. Chem.-Asian J., 2019,14(6):674-688. doi: 10.1002/asia.201801469

    14. [14]

      Qiu Q Q, Xu P F, Zhu Y J, Yu J R, Wei M R, Xi W B, Feng H, Chen J R, Qian Z S. Rational design of dual-state emission luminogens with solvatochromism by combining a partially shared donor- acceptor pattern and twisted structures[J]. Chem.-Eur. J., 2019,25(70):15983-15987. doi: 10.1002/chem.201903857

    15. [15]

      Behera S K, Park S Y, Gierschner J. Dual emission: Classes, mechanisms, and conditions[J]. Angew. Chem. Int. Ed., 2021,60:22624-22638. doi: 10.1002/anie.202009789

    16. [16]

      Rodríguez-Cortés L A, Navarro-Huerta A, Rodríguez-Molina B. One molecule to light it all: The era of dual-state emission[J]. Matter, 2021,4(8):2622-2624. doi: 10.1016/j.matt.2021.06.023

    17. [17]

      Ni Y Y, Zhang S S, He X, Huang J Y, Kong L, Yang J Y, Yang J X. Dual-state emission difluoroboron derivatives for selective detection of picric acid and reversible acid/base fluorescence switching[J]. Anal. Methods, 2021,13(25):2830-2835. doi: 10.1039/D1AY00477H

    18. [18]

      Jing T T, Yan L F. pH-responsive dye with dual-state emission in both visible and near infrared regions[J]. Sci. China Chem., 2018,61(7):863-870. doi: 10.1007/s11426-017-9221-6

    19. [19]

      Huang Z, Tang F, Ding A X, He F, Duan R H, Huang J Y, Kong L, Yang J X. D-A-D structured triphenylamine fluorophore with bright dual-state emission for reversible mechanofluorochromism and trace water detection[J]. Mol. Syst. Des. Eng., 2022,7(8):963-968. doi: 10.1039/D2ME00053A

    20. [20]

      LU H B, WU S J, ZHANG C, QIU L Z, YANG J X. Synthesis and photoluminescence property of α-cyanostilbene derivatives molecules[J]. Chin. J. Lumin, 2015,36(9):983-988.  

    21. [21]

      ZHAO C H, ZHAO Y H, LIN J M. Optoelectronic materials of organoboron π-conjugated systems[J]. Prog. Chem, 2009,21(12):2605-2612.  

    22. [22]

      QIN Y Y, XU W J, HU C Y, LIU S J, ZHAO Q. Four-coordinated organoboron compounds with π-conjugated N, C-chelate ligand and their optoelectronic applications[J]. Chinese J. Inorg. Chem, 2017,33(10):1705-1721.  

    23. [23]

      Prates J L B, Pavan A R, Dos Santos J L. Boron in medicinal and organic chemistry[J]. Curr. Org. Chem., 2021,25(16):1853-1867. doi: 10.2174/1385272825666210625120209

    24. [24]

      Kataria M, Kim Y, Chau H D, Kwon N Y, Hong Y J, Kim T, Ko J, Son M K, Bang J, Park S, Kim H I, Lee K, Choi D H. Solvent mediated thermodynamically favorable helical supramolecular self-assembly: Recognition behavior towards achiral and chiral analytes[J]. J. Mater. Chem. C, 2022,1010679. doi: 10.1039/D2TC01113A

    25. [25]

      Gong Y, Guo X M, Wang S F, Su H M, Xia A D, He Q G, Bai F L. Photophysical properties of photoactive molecules with conjugated push-pull structures[J]. J. Phys. Chem. A, 2007,111(26):5806-5812. doi: 10.1021/jp0705323

    26. [26]

      Seo J, Kim J, Park S Y. Strong solvatochromic fluorescence from the intramolecular charge-transfer state created by excited-state intramolecular proton transfer[J]. J. Am. Chem. Soc., 2004,126(36):11154-11155. doi: 10.1021/ja047815i

    27. [27]

      Zhang C L, Liu M S, Liu S X, Yang H, Zhao Q, Liu Z P, He W J. Phosphorescence lifetime imaging of labile Zn2+ in mitochondria via a phosphorescent Iridium? complex[J]. Inorg. Chem., 2018,57:10625-10632. doi: 10.1021/acs.inorgchem.8b01272

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(4)
  • Abstract views(888)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return