Citation: Nian WANG, Meng LI, Ying JI, Ming-Wu XIANG, Yu-Jiao GUO, Hong-Li BAI, Xiao-Fang LIU, Jun-Ming GUO. Synthesis and electrochemical properties of truncated octahedral LiZn0.08Al0.01Mn1.91O4 cathode material by solid-state combustion method[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1042-1052. doi: 10.11862/CJIC.2023.085 shu

Synthesis and electrochemical properties of truncated octahedral LiZn0.08Al0.01Mn1.91O4 cathode material by solid-state combustion method

Figures(9)

  • A single-crystal truncated octahedral morphology LiZn0.08Al0.01Mn1.91O4 cathode material with {111}, {110}, and {100} crystal surfaces was synthesized by a solid-state combustion method. The results show that Zn-Al co-doped promotes the crystal development and the selective growth of crystal surfaces of spinel LiMn2O4 materials, while forming single-crystal truncated octahedral grain. The Zn-Al co-doped sample effectively inhibits the JahnTeller effect and reduces Mn dissolution, thus enhancing the crystal structure stability and significantly improving the electrochemical performance. The initial discharge specific capacity of LiZn0.08Al0.01Mn1.91O4 were 92.6 and 76.5 mAh·g-1 at 5C and 10C, the corresponding capacity retention remained 70.4% and 74.8% after 2 000 cycles, respectively. Even at a high current density of 15C, the initial discharge capacity was still 64.2 mAh·g-1, and the capacity retention can reach 82.2% after 800th cycles. Compared with LiZn0.08Mn1.92O4, the LiZn0.08Al0.01Mn1.91O4 cathode material had a larger Li+ diffusion coefficient (1.02×10-11 cm2·s-1) and smaller apparent activation energy (25.60kJ mol-1). The results show that the Zn-Al co-doped and monocrystalline morphology control strategy can reduce the energy barrier of Li+ during the de-intercalation process and increase the diffusion rate in electrode materials.
  • 加载中
    1. [1]

      LIU Q, GUO J M, LIU X F, BAI H L, XIANG M W, BAI W, DUAN K J. Preparation and long cycle electrochemical properties of B-doped spinel LiMn2O4 cathode material[J]. Chinese J. Inorg. Chem., 2021,37(2):276-284.  

    2. [2]

      LIU P S, SONG L J, HUANG C L, HU L, LU X Y, JIANG Q. Effects of manganese sources on the high temperature performance of spinel LiMn2O4[J]. Chinese J. Inorg. Chem., 2023,39(1):55-62.  

    3. [3]

      JI Y, LI M, GUO Y J, GUO J M, XIANG M W, LIU X F. Preparation of two types of truncated octahedral LiMn2O4 materials induced by Ni-Cu doping and their electrochemical properties[J]. Transactions of Materials and Heat Treatment, 2023,44(3):28-40.  

    4. [4]

      Abdollahifar M, Lannelongue P, Liu H W, Chen H, Sheu H S, Lee J F, Liao Y F, Wu N L. Room-temperature synthesis of LiMn2O4 by electrochemical ion exchange in an aqueous medium[J]. ACS Sustain. Chem. Eng., 2021,9(41):13717-13725. doi: 10.1021/acssuschemeng.1c03747

    5. [5]

      Mao F X, Guo W, Ma J M. Research progress on design strageties, synthesis and performance of LiMn2O4-based cathodes[J]. RSC Adv., 2015,5(127):105248-105258. doi: 10.1039/C5RA21777F

    6. [6]

      Nitta N, Wu F X, Lee J T, Yushin G. Li-ion battery materials: Present and future[J]. Mater. Today, 2015,18(5):252-264. doi: 10.1016/j.mattod.2014.10.040

    7. [7]

      Zuo X X, Chang K, Zhao J, Xie Z Z, Tang H W, Li B, Chang Z R. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. J. Mater. Chem. A, 2016,4(1):51-58. doi: 10.1039/C5TA06869J

    8. [8]

      Goncalves R, Sharma P, Ram P, Ferdov S, Silva M M, Costa C M, Singhal R, Sharma R K, Lanceros-Méndez S. Improved electrochemical performance of LiMn1.5M0.5O4(M=Ni, Co, Cu) based cathodes for lithium-ion batteries[J]. J. Alloy. Compd., 2021,853157208. doi: 10.1016/j.jallcom.2020.157208

    9. [9]

      Madhu M, Venkateswara Rao A, Mutyala S. La and Ni Co-doping effect in LiMn2O4 on structural and electrochemical properties for lithium-ion batteries[J]. J. Electron. Mater., 2021,50(9):5141-5149. doi: 10.1007/s11664-021-09037-w

    10. [10]

      XIA B B, QIU G C, SUN H D, FANG G Q, LIU W W, ZHANG R X, WANG H Y, LI D C. Improved electrochemical properties of conducting AZO-coated spinel LiMn2O4 at 55℃[J]. Chinese J. Inorg. Chem., 2014,30(4):725-732.  

    11. [11]

      YANG M, CHEN Y F, LIU H L, XIANG M W, GUO Y J, LIU X F, GUO J M. Preparation and electrochemical properties of truncated octahedral LiFe0.12Mn1.88O4 cathode materials[J]. J. Chin. Ceram Soc., 2022,50(7):1865-1874.  

    12. [12]

      Marincaş A H, Goga F, Dorneanu S A, Petru I. Review on synthesis methods to obtain LiMn2O4 based cathode materials for Li-ion batteries[J]. J. Solid State Electrochem., 2020,24(3):473-497. doi: 10.1007/s10008-019-04467-3

    13. [13]

      Liang Q M, Wang Z L, Bai W, GUO J M, Xiang M W, Liu X F, Bai H L. Stimulative formation of truncated octahedral LiMn2O4 by Cr and Al co-doping for use in durable cycling Li-ion batteries[J]. Dalton Trans., 2021,50(46):17052-17061. doi: 10.1039/D1DT03221F

    14. [14]

      Arumugam D, Kalaignan G P, Vediappan K, Lee C W. Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 cathode materials for rechargeable lithium batteries[J]. Electrochim. Acta, 2010,55(28):8439-8444. doi: 10.1016/j.electacta.2010.07.033

    15. [15]

      Zhao H Y, Gao X Y, Li Y F, Ran Q W, Fu C G, Feng Y P, Liu J T, Liu X Q, Su J X. Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material[J]. Ceram. Int., 2019,45(14):17591-17597. doi: 10.1016/j.ceramint.2019.05.324

    16. [16]

      Jiang J B, Liang L W, Li D, Xiao J, Peng Z D, Du K, Cao Y B, Hu G R, Jiang F. Synthesis of High-performance cycling LiNixMn2-xO4(x ≤ 0.10) as cathode material for lithium batteries[J]. J. Nanosci. Nanotechnol., 2017,17(12):9182-9185. doi: 10.1166/jnn.2017.13919

    17. [17]

      Jiang J B, Li W, Deng H J, Gong G, Li N. Research on improving the electrochemical performance of LiMn2O4 via Cr-doping[J]. J. Nanosci. Nanotechnol., 2019,19(1):125-129. doi: 10.1166/jnn.2019.16386

    18. [18]

      Yuan A B, Tian L, Xu W M, Wang Y Q. Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte[J]. J. Power Sources, 2010,195(15):5032-5038. doi: 10.1016/j.jpowsour.2010.01.074

    19. [19]

      Tao Y, Liu Q, Guo Y J, Xiang M W, Liu X F, Bai W, Guo J M, Chou S L. Regulation of morphology evolution and Mn dissolution for ultralong cycled spinel LiMn2O4 cathode materials by B-doping[J]. J. Power Sources, 2022,524231073. doi: 10.1016/j.jpowsour.2022.231073

    20. [20]

      Lee J, Kang Y, Han S, Hwang C S, Choi J H. Ab initio study on the structural characteristics of amorphous Zn2SnO4[J]. Appl. Phys. Lett., 2013,103(25)252102. doi: 10.1063/1.4850895

    21. [21]

      Li B Z, Xu W G, Qiu S L, Pang W Q, Xu R R. Simulated calculation of aluminophosphate molecular sieves structure and stability. 2. Bond lengths, bond angles and distribution of framework structure[J]. Chem. Res. Chin. Univ., 1997,18(7):1000-1006.  

    22. [22]

      Suzuki K, Oumi S, Takami S, Kubo M, Miyamoto A, Kikuchi M, Yamazaki N, Mita M. Structural properties of LixMn2O4 as investigated by molecular dynamics and density functional theory[J]. Jpn. J. Appl. Phys., 2000,39(7):4318-4322.  

    23. [23]

      Xu W Q, Li Q L, Guo J M, Bai H L, Su C W, Ruan R S, Peng J H. Electrochemical evaluation of LiZnxMn2O4(x ≤ 0.10) cathode material synthesized by solution combustion method[J]. Ceram. Int., 2016,42(5):5693-5698. doi: 10.1016/j.ceramint.2015.12.098

    24. [24]

      Cai Z F, Ma Y Z, Huang X N, Yan X H, Yu Z X, Zhang S H, Song G S, Xu Y L, Wen C E, Yang W D. High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries[J]. J. Energy Storage, 2020,27101036. doi: 10.1016/j.est.2019.101036

    25. [25]

      Xu W Q, Zheng Y H, Cheng Y, Qi R J, Peng H, Lin H C, Huang R. Understanding the effect of Al doping on the electrochemical performance improvement of the LiMn2O4 cathode material[J]. ACS Appl. Mater. Interfaces, 2021,13(38):45446-45454. doi: 10.1021/acsami.1c11315

    26. [26]

      LIANG L Q, GUO J M, YANG L Y, SU C W, DUAN K J, XIANG M W, BAI W. Synthesis of LiNi0.10ZnxMn1.90-xO4(x ≤ 0.15) cathode materials synthesized by solid state combustion and its electrochemical properties[J]. Journal of Yunnan University (Natural Sciences Edition), 2020,42(1):119-126.  

    27. [27]

      Tao Y, Lu Y, Guo Y J, Guo J M, Xiang M W, Bai W, Liu X F, Bai H L. Facile synthesis and electrochemical properties of truncated octahedral Al, Ni dual doped LiMn2O4 cathode materials[J]. J. Alloy. Compd., 2022,904164027. doi: 10.1016/j.jallcom.2022.164027

    28. [28]

      Thirunakaran R, Kim T, Yoon W S. Zinc and aluminium: Glutamic acid assisted dual-doped LiMn2O4 spinels via sol-gel method as cathode material for use in lithium rechargeable batteries[J]. J. Sol-Gel Sci. Technol., 2015,73(1):62-71. doi: 10.1007/s10971-014-3495-1

    29. [29]

      Kim J S, Kim K S, Cho W, Shin W H, Kanno R, Choi J W. A Truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries[J]. Nano Lett., 2012,12:6358-6365. doi: 10.1021/nl303619s

    30. [30]

      Jiang C H, Tang Z L, Wang S T, Zhang Z T. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries[J]. J. Power Sources, 2017,357:144-148. doi: 10.1016/j.jpowsour.2017.04.079

    31. [31]

      Fu Y, Jiang H, Hu Y J, Dai Y H, Zhang L, Li C Z. Synergistic enhancement effect of Al doping and highly active facets of LiMn2O4 cathode materials for lithium-ion batteries[J]. Ind. Eng. Chem. Res., 2015,54(15):3800-3805.  

    32. [32]

      Xiao B, Wu G, Wang T D, Wei Z G, Sui Y W, Shen B L, Qi J Q, Wei F X, Meng Q K, Ren Y J, Xue X L, Zheng J C, Mao J, Dai K H. High entropy oxides (FeNiCrMnX)3O4(X=Zn, Mg) as anode materials for lithium ion batteries[J]. Ceram. Int., 2021,47(24):33972-33977.  

    33. [33]

      Cai Y J, Huang Y D, Wang X C, Jia D Z, Pang W K, Guo Z P, Du Y P, Tang X C. Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life[J]. J. Power Sources, 2015,278:574-581.  

    34. [34]

      Xu J T, Chou S L, Gu Q F, Liu H K, Dou S X. The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries[J]. J. Power Sources, 2013,225:172-178.  

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    10. [10]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    16. [16]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    17. [17]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

Metrics
  • PDF Downloads(0)
  • Abstract views(1015)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return