Citation: Yu-Can CHE, Peng-Wei CHENG, Yi ZHOU, Fu-Sheng KE. Rapid synthesis of Ag-based metal-organic framework at room temperature for efficient electrocatalytic CO2 reduction[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1005-1013. doi: 10.11862/CJIC.2023.080 shu

Rapid synthesis of Ag-based metal-organic framework at room temperature for efficient electrocatalytic CO2 reduction

  • Corresponding author: Fu-Sheng KE, kefs@whu.edu.cn
  • Received Date: 26 March 2023
    Revised Date: 25 April 2023

Figures(6)

  • An Ag-based metal-organic framework (Ag-MOF) material was successfully synthesized and used for the first time in the electrocatalytic CO2 reduction reaction (CO2RR) by selecting 1, 2, 4-triazole as the ligand with strong electron-donating ability. The crystal structure, morphology, and electrocatalytic CO2RR performance of Ag-MOF were systematically investigated using characterization methods such as powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and chronoamperometry. Compared to commercial Ag nanoparticles, Ag-MOF exhibits superior electrocatalytic CO2RR performance, better stability, and higher catalytic activity. At -0.9 V (vs RHE), the Faraday efficiency of CO achieved 96.1%. When the potential decreased to -1.1 V (vs RHE), the current density could reach 17 mA·cm-2 and the electrode could operate stably for 300 min. It is shown that the chemical environment surrounding the catalytic site can be altered by selecting the appropriate ligand, resulting in the efficient conversion of CO2 to the target product.
  • 加载中
    1. [1]

      Lai W C, Qiao Y, Zhang J W, Lin Z Q, Huang H W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction[J]. Energy Environ. Sci., 2022,15(9):3603-3629. doi: 10.1039/D2EE00472K

    2. [2]

      Zhang J W, Sewell C D, Huang H W, Lin Z Q. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization[J]. Adv. Energy Mater., 2021,11(47)2102767. doi: 10.1002/aenm.202102767

    3. [3]

      ZHANG Y X, WANG C, SHU W X. Research progress of carbon dioxide reduction and utilization[J]. Chemical Industry and Engineering Progress, 2023,42(2):944-956. doi: 10.16085/j.issn.1000-6613.2022-0705

    4. [4]

      Shih C F, Zhang T, Li J H, Bai C L. Powering the future with liquid sunshine[J]. Joule, 2018,2(10):1925-1949. doi: 10.1016/j.joule.2018.08.016

    5. [5]

      Yin X B, Yang R G, Tan G, Fan S H. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source[J]. Science, 2020,370(6518):786-791. doi: 10.1126/science.abb0971

    6. [6]

      Rosenbloom D, Markard J. A COVID-19 recovery for climate[J]. Science, 2020,368(6490)447. doi: 10.1126/science.abc4887

    7. [7]

      PENG L W, ZHANG Y, HE R N, XU N N, QIAO J L. Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction[J]. Acta Phys.-Chim. Sin., 2023,392302037. doi: 10.3866/PKU.WHXB202302037

    8. [8]

      Sanz-Pérez E S, Murdock C R, Didas S A, Jones C W. Direct capture of CO2 from ambient air[J]. Chem. Rev., 2016,116(19):11840-11876. doi: 10.1021/acs.chemrev.6b00173

    9. [9]

      Qiao J L, Liu Y Y, Hong F, Zhang J J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem. Soc. Rev., 2014,43(2):631-675. doi: 10.1039/C3CS60323G

    10. [10]

      Zhao S, Jin R X, Jin R C. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS Energy. Lett., 2018,3(2):452-462. doi: 10.1021/acsenergylett.7b01104

    11. [11]

      Han G H, Bang J, Park G, Choe S, Jang Y J, Jang H W, Kim S Y, Ahn , Sang H. Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products[J]. Small, 2023,192205765. doi: 10.1002/smll.202205765

    12. [12]

      Baños R, Manzano-Agugliaro F, Montoya F G, Gil C, Alcayde A, Gómez J. Optimization methods applied to renewable and sustainable energy: A review[J]. Renew. Sust. Energ. Rev., 2011,15(4):1753-1766. doi: 10.1016/j.rser.2010.12.008

    13. [13]

      Wang G X, Chen J X, Ding Y C, Cai P W, Yi L C, Li Y, Tu C Y, Hou Y, Wen Z H, Dai L M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products[J]. Chem. Soc. Rev., 2021,50(8):4993-5061. doi: 10.1039/D0CS00071J

    14. [14]

      Zhao J, Xue S, Barber J, Zhou Y W, Meng J, Ke X B. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction[J]. J. Mater. Chem. A, 2020,8(9):4700-4734. doi: 10.1039/C9TA11778D

    15. [15]

      Popović S, Smiljanić M, Jovanovič P, Vavra J, Buonsanti R, Hodnik N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction[J]. Angew. Chem. Int. Ed., 2020,59(35):14736-14746. doi: 10.1002/anie.202000617

    16. [16]

      Sheng W C, Kattel S, Yao S Y, Yan B H, Liang Z X, Hawxhurst C J, Wu Q Y, Chen J G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios[J]. Energy Environ. Sci., 2017,10(5):1180-1185. doi: 10.1039/C7EE00071E

    17. [17]

      Yang H, Huang J L, Yang H, Guo Q Y, Jiang B, Chen J X, Yuan X L. Design and synthesis of Ag-based catalysts for electrochemical CO2 reduction: Advances and perspectives[J]. Chem.-Asian J., 2022,17(18)e202200637.

    18. [18]

      Mistry H, Choi Y W, Bagger A, Scholten F, Bonifacio C S, Sinev I, Divins N J, Zegkinoglou I, Jeon H S, Kisslinger K, Stach E A, Yang J C, Rossmeisl J, Roldan Cuenya B. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts[J]. Angew. Chem. Int. Ed., 2017,56(38):11394-11398. doi: 10.1002/anie.201704613

    19. [19]

      Firet N J, Blommaert M A, Burdyny T, Venugopal A, Bohra D, Longo A, Smith A W. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction[J]. J. Mater. Chem. A, 2019,7(6):2597-2607. doi: 10.1039/C8TA10412C

    20. [20]

      Wang D, Zhu Y, Yu W T, He Z Q, Dong F L, Shen Y, Zeng T, Lu X H, Ma J, Wang L Z, Song S. Ag-MOF-derived 3D Ag dendrites used for the efficient electrocatalytic reduction of CO2 to CO[J]. Electrochim. Acta, 2022,403139652. doi: 10.1016/j.electacta.2021.139652

    21. [21]

      Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. J. Am. Chem. Soc., 2017,139:2160-2163. doi: 10.1021/jacs.6b12103

    22. [22]

      Raciti D, Braun T, Tackett B M, Xu H, Cruz M, Wiley B J, Moffat T P. High-aspect-ratio Ag nanowire mat electrodes for electrochemical CO production from CO2[J]. ACS Catal., 2021,11(19):11945-11959. doi: 10.1021/acscatal.1c02783

    23. [23]

      Zhang Y, Ji L, Qiu W B, Shi X F, Asiri A M, Sun X P. Iodidederived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide[J]. Chem. Commun., 2018,54(21):2666-2669. doi: 10.1039/C8CC00984H

    24. [24]

      Hsieh Y C, Betancourt L E, Senanayake S D, Hu E Y, Zhang Y, Xu W Q, Polyansky D E. Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions[J]. ACS Appl. Energy Mater., 2019,2(1):102-109. doi: 10.1021/acsaem.8b01692

    25. [25]

      Lin R, Ma X L, Cheong W C, Zhang C, Zhu W, Pei J J, Zhang K Y, Wang B, Liang S Y, Liu Y X, Zhuang Z, Yu R, Xiao H, Li J, Wang D S, Peng Q, Chen C, Li Y D. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption[J]. Nano Res., 2019,12(11):2866-2871. doi: 10.1007/s12274-019-2526-1

    26. [26]

      Low Q H, Loo N W X, Calle-Vallejo F, Yeo B S. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulsedeposited on silver foam[J]. Angew. Chem. Int. Ed., 2019,131(8):2278-2282. doi: 10.1002/ange.201810991

    27. [27]

      ZHAO D, LIAO Z T, ZHANG W, CHEN Z Z, SUN W Y. Progress in functional metal-organic frameworks for catalytic conversion of carbon dioxide[J]. Chinese J. Inorg. Chem., 2021,37(7):1153-1176.  

    28. [28]

      ZHAO M, WU D, JIANG F L, CHEN Q H, HONG M C. A flexible ultramicroporous metal-organic framework for size-selective carbon dioxide capture constructed from a semirigid[J]. Chinese J. Inorg. Chem., 2022,38(12):2459-2567. doi: 10.11862/CJIC.2022.256 

    29. [29]

      Li Z, Song M, Zhu W Y, Zhuang W C, Du X H, Tian L. MOF-derived hollow heterostructures for advanced electrocatalysis[J]. Coord. Chem. Rev., 2021,439213946. doi: 10.1016/j.ccr.2021.213946

    30. [30]

      JIA H N, YAO N, CONG H J. Rapid synthesis of Co-based metalorganic framework nanoparticle at room temperature for efficient oxy- gen evolution reaction[J]. Chinese J. Inorg. Chem., 2021,37(11):2011-2019. doi: 10.11862/CJIC.2021.233 

    31. [31]

      Zhuo L L, Chen P, Zheng K, Zhang X W, Wu J X, Lin D Y, Liu S Y, Wang Z S, Liu J Y, Zhou D D, Zhang J P. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity[J]. Angew. Chem. Int. Ed., 2022,61(28)e202204967.  

    32. [32]

      Zou Y B, Zhan T T, Yang Y, Fan Z W, Li Y B, Zhang Y F, Ma X L, Chen Q H, Xiang S C, Zhang Z J. Single-phase proton-and electronconducting Ag-organic coordination polymers for efficient CO2 electroreduction[J]. J. Mater. Chem. A, 2022,10(6):3216-3225. doi: 10.1039/D1TA09548J

    33. [33]

      Hong W T, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis[J]. Energy Environ. Sci., 2015,8(5):1404-1427. doi: 10.1039/C4EE03869J

    34. [34]

      She Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017,355(146)eaad4998.  

    35. [35]

      Zhou Y T, Abazari R, Chen J, Tahir M, Kumar A, Ikreedeegh R R, Rani E, Singh H, Kirillov A M. Bimetallic metal-organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications[J]. Coord. Chem. Rev., 2022,451214264. doi: 10.1016/j.ccr.2021.214264

    36. [36]

      Zhu H L, Chen H Y, Han Y X, Zhao Z H, Liao P Q, Chen X M. A porous π-π stacking framework with dicopper(Ⅰ) sites and adjacent proton relays for electroreduction of CO2 to C2+ products[J]. J. Am. Chem. Soc., 2022,144(29):13319-13326. doi: 10.1021/jacs.2c04670

    37. [37]

      Xi W, Ma R Z, Wang H, Gao Z, Zhang W Q, Zhao Y F. Ultrathin Ag nanowires electrode for electrochemical syngas production from carbon dioxide[J]. ACS. Sustain. Chem. Eng., 2018,6(6):7687-7694. doi: 10.1021/acssuschemeng.8b00527

    38. [38]

      Li H, Wen P, Itanze D S, Hood Z D, Ma X, Kim M, Adhikari S, Lu C, Dun C C, Chi M F, Qiu Y J, Geyer S. M. Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas[J]. Nat. Commun., 2019,105724. doi: 10.1038/s41467-019-13388-8

    39. [39]

      Luan C, Shao Y, Lu Q, Gao S, Huang K, Wu H, Yao K. High-performance carbon dioxide electrocatalytic reduction by easily fabricated large-scale silver nanowire arrays[J]. ACS Appl. Mater. Interfaces, 2018,10(21):17950-17956. doi: 10.1021/acsami.8b03461

    40. [40]

      Qiu J P, Tang J T, Shen J, Wu C W, Qian M Q, He Z Q, Chen J M, Shuang S. Preparation of a silver electrode with a three-dimensional surface and its performance in the electrochemical reduction of carbon dioxide[J]. Electrochim. Acta, 2016,203:99-108. doi: 10.1016/j.electacta.2016.03.182

    41. [41]

      Ma M, Trześniewski B J, Xie J, Smith W A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts[J]. Angew. Chem. Int. Ed., 2016,128(33):9900-9904. doi: 10.1002/ange.201604654

    42. [42]

      Lu Q, Rosen J, Zhou Y, Hutchings G S, Kimmel Y C, Chen J G, Jiao F. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nat. Commun., 2014,53242. doi: 10.1038/ncomms4242

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(4)
  • Abstract views(1089)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return